Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_06_00547_9,
author = {Kang, Nam-Gyu},
title = {Boundary behavior of {SLE}},
journal = {Journal of the American Mathematical Society},
pages = {185--210},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2007},
doi = {10.1090/S0894-0347-06-00547-9},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00547-9/}
}
TY - JOUR AU - Kang, Nam-Gyu TI - Boundary behavior of SLE JO - Journal of the American Mathematical Society PY - 2007 SP - 185 EP - 210 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00547-9/ DO - 10.1090/S0894-0347-06-00547-9 ID - 10_1090_S0894_0347_06_00547_9 ER -
Kang, Nam-Gyu. Boundary behavior of SLE. Journal of the American Mathematical Society, Tome 20 (2007) no. 1, pp. 185-210. doi: 10.1090/S0894-0347-06-00547-9
[1] , Harmonic measure, ð¿Â² estimates and the Schwarzian derivative J. Anal. Math. 1994 77 113
[2] , Wiggly sets and limit sets Ark. Mat. 1997 201 224
[3] , , , The dimension of the Brownian frontier is greater than 1 J. Funct. Anal. 1997 309 336
[4] A proof of the Bieberbach conjecture Acta Math. 1985 137 152
[5] Conformally invariant fractals and potential theory Phys. Rev. Lett. 2000 1363 1367
[6] Conformal fractal geometry & boundary quantum gravity 2004 365 482
[7] Brownian motion and martingales in analysis 1984
[8] , , , Higher transcendental functions. Vol. I 1981
[9] Fourier analysis and its applications 1992
[10] , Harmonic measure 2005
[11] Geometric theory of functions of a complex variable 1969
[12] , Dimension of the boundary of quasiconformal Siegel disks Invent. Math. 2002 465 493
[13] , On functions of bounded mean oscillation Comm. Pure Appl. Math. 1961 415 426
[14] Rectifiable sets and the traveling salesman problem Invent. Math. 1990 1 15
[15] , Brownian motion and stochastic calculus 1991
[16] The dimension of the frontier of planar Brownian motion Electron. Comm. Probab. 1996
[17] Conformally invariant processes in the plane 2005
[18] , , The dimension of the planar Brownian frontier is 4/3 Math. Res. Lett. 2001 13 23
[19] , , Values of Brownian intersection exponents. I. Half-plane exponents Acta Math. 2001 237 273
[20] , , Values of Brownian intersection exponents. I. Half-plane exponents Acta Math. 2001 237 273
[21] , , Analyticity of intersection exponents for planar Brownian motion Acta Math. 2002 179 201
[22] , , Values of Brownian intersection exponents. III. Two-sided exponents Ann. Inst. H. Poincaré Probab. Statist. 2002 109 123
[23] , , Conformal invariance of planar loop-erased random walks and uniform spanning trees Ann. Probab. 2004 939 995
[24] , , On the scaling limit of planar self-avoiding walk 2004 339 364
[25] Boundary behaviour of conformal maps 1992
[26] Foundations of hyperbolic manifolds 1994
[27] , Basic properties of SLE Ann. of Math. (2) 2005 883 924
[28] , A central limit theorem and law of the iterated logarithm for a random field with exponential decay of correlations Canad. J. Math. 2004 209 224
[29] Scaling limits of loop-erased random walks and uniform spanning trees Israel J. Math. 2000 221 288
[30] , Harmonic explorer and its convergence to ðð¿ð¸â Ann. Probab. 2005 2127 2148
[31] Critical percolation in the plane: conformal invariance, Cardyâs formula, scaling limits C. R. Acad. Sci. Paris Sér. I Math. 2001 239 244
[32] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals 1993
[33] Random planar curves and Schramm-Loewner evolutions 2004 107 195
Cité par Sources :