Universally optimal distribution of points on spheres
Journal of the American Mathematical Society, Tome 20 (2007) no. 1, pp. 99-148

Voir la notice de l'article provenant de la source American Mathematical Society

We study configurations of points on the unit sphere that minimize potential energy for a broad class of potential functions (viewed as functions of the squared Euclidean distance between points). Call a configuration sharp if there are $m$ distances between distinct points in it and it is a spherical $(2m-1)$-design. We prove that every sharp configuration minimizes potential energy for all completely monotonic potential functions. Examples include the minimal vectors of the $E_8$ and Leech lattices. We also prove the same result for the vertices of the $600$-cell, which do not form a sharp configuration. For most known cases, we prove that they are the unique global minima for energy, as long as the potential function is strictly completely monotonic. For certain potential functions, some of these configurations were previously analyzed by Yudin, Kolushov, and Andreev; we build on their techniques. We also generalize our results to other compact two-point homogeneous spaces, and we conclude with an extension to Euclidean space.
DOI : 10.1090/S0894-0347-06-00546-7

Cohn, Henry 1 ; Kumar, Abhinav 2, 1

1 Microsoft Research, One Microsoft Way, Redmond, Washington 98052-6399
2 Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
@article{10_1090_S0894_0347_06_00546_7,
     author = {Cohn, Henry and Kumar, Abhinav},
     title = {Universally optimal distribution of points on spheres},
     journal = {Journal of the American Mathematical Society},
     pages = {99--148},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2007},
     doi = {10.1090/S0894-0347-06-00546-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00546-7/}
}
TY  - JOUR
AU  - Cohn, Henry
AU  - Kumar, Abhinav
TI  - Universally optimal distribution of points on spheres
JO  - Journal of the American Mathematical Society
PY  - 2007
SP  - 99
EP  - 148
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00546-7/
DO  - 10.1090/S0894-0347-06-00546-7
ID  - 10_1090_S0894_0347_06_00546_7
ER  - 
%0 Journal Article
%A Cohn, Henry
%A Kumar, Abhinav
%T Universally optimal distribution of points on spheres
%J Journal of the American Mathematical Society
%D 2007
%P 99-148
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00546-7/
%R 10.1090/S0894-0347-06-00546-7
%F 10_1090_S0894_0347_06_00546_7
Cohn, Henry; Kumar, Abhinav. Universally optimal distribution of points on spheres. Journal of the American Mathematical Society, Tome 20 (2007) no. 1, pp. 99-148. doi: 10.1090/S0894-0347-06-00546-7

[1] Andreev, Nikolay N. An extremal property of the icosahedron East J. Approx. 1996 459 462

[2] Andreev, N. N. Location of points on a sphere with minimal energy Tr. Mat. Inst. Steklova 1997 27 31

[3] Andreev, N. N. A spherical code Uspekhi Mat. Nauk 1999 255 256

[4] Andrews, George E., Askey, Richard, Roy, Ranjan Special functions 1999

[5] Askey, Richard Orthogonal polynomials and special functions 1975

[6] Baez, John C. The octonions Bull. Amer. Math. Soc. (N.S.) 2002 145 205

[7] Bannai, E., Munemasa, A., Venkov, B. The nonexistence of certain tight spherical designs Algebra i Analiz 2004 1 23

[8] Bannai, Eiichi, Sloane, N. J. A. Uniqueness of certain spherical codes Canadian J. Math. 1981 437 449

[9] Bã¶Rã¶Czky, K. Packing of spheres in spaces of constant curvature Acta Math. Acad. Sci. Hungar. 1978 243 261

[10] Bã¶Rã¶Czky, Kã¡Roly, Jr. Finite packing and covering 2004

[11] Boyvalenkov, P., Danev, D. Uniqueness of the 120-point spherical 11-design in four dimensions Arch. Math. (Basel) 2001 360 368

[12] Cameron, P. J., Goethals, J.-M., Seidel, J. J. Strongly regular graphs having strongly regular subconstituents J. Algebra 1978 257 280

[13] Cohn, Henry New upper bounds on sphere packings. II Geom. Topol. 2002 329 353

[14] Cohn, Henry, Elkies, Noam New upper bounds on sphere packings. I Ann. of Math. (2) 2003 689 714

[15] Cohn, Henry, Kumar, Abhinav The densest lattice in twenty-four dimensions Electron. Res. Announc. Amer. Math. Soc. 2004 58 67

[16] Conway, John H., Hardin, Ronald H., Sloane, Neil J. A. Packing lines, planes, etc.: packings in Grassmannian spaces Experiment. Math. 1996 139 159

[17] Conway, J. H., Sloane, N. J. A. Sphere packings, lattices and groups 1999

[18] Cuypers, Hans A note on the tight spherical 7-design in ℝ²³ and 5-design in ℝ⁷ Des. Codes Cryptogr. 2005 333 337

[19] Davis, Philip J. Interpolation and approximation 1963

[20] Delsarte, P., Goethals, J. M., Seidel, J. J. Spherical codes and designs Geometriae Dedicata 1977 363 388

[21] Ebeling, Wolfgang Lattices and codes 2002

[22] Gangolli, Ramesh Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters Ann. Inst. H. Poincaré Sect. B (N.S.) 1967 121 226

[23] Gasper, George Linearization of the product of Jacobi polynomials. I Canadian J. Math. 1970 171 175

[24] Godsil, Chris, Royle, Gordon Algebraic graph theory 2001

[25] Goethals, J.-M., Seidel, J. J. The regular two-graph on 276 vertices Discrete Math. 1975 143 158

[26] Graham, S. W., Vaaler, Jeffrey D. A class of extremal functions for the Fourier transform Trans. Amer. Math. Soc. 1981 283 302

[27] Hartshorne, Robin Algebraic geometry 1977

[28] Horn, Roger A., Johnson, Charles R. Matrix analysis 1985

[29] Kabatjanskiä­, G. A., Levenå¡Teä­N, V. I. Bounds for packings on the sphere and in space Problemy Peredači Informacii 1978 3 25

[30] Kolushov, A. V., Yudin, V. A. On the Korkin-Zolotarev construction Diskret. Mat. 1994 155 157

[31] Kolushov, A. V., Yudin, V. A. Extremal dispositions of points on the sphere Anal. Math. 1997 25 34

[32] Leech, John Equilibrium of sets of particles on a sphere Math. Gaz. 1957 81 90

[33] Levenå¡Teä­N, V. I. Boundaries for packings in 𝑛-dimensional Euclidean space Dokl. Akad. Nauk SSSR 1979 1299 1303

[34] Levenshteä­N, V. I. Designs as maximum codes in polynomial metric spaces Acta Appl. Math. 1992 1 82

[35] Levenshtein, Vladimir I. Universal bounds for codes and designs 1998 499 648

[36] Manin, Yu. I. Cubic forms 1986

[37] Martinet, Jacques Perfect lattices in Euclidean spaces 2003

[38] Mceliece, Robert J., Rodemich, Eugene R., Rumsey, Howard, Jr., Welch, Lloyd R. New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities IEEE Trans. Inform. Theory 1977 157 166

[39] Montgomery, Hugh L. Minimal theta functions Glasgow Math. J. 1988 75 85

[40] Odlyzko, A. M., Sloane, N. J. A. New bounds on the number of unit spheres that can touch a unit sphere in 𝑛 dimensions J. Combin. Theory Ser. A 1979 210 214

[41] Pã³Lya, G., Szegå‘, G. Problems and theorems in analysis. Vol. II 1976

[42] Rudin, Walter Functional analysis 1991

[43] Sarnak, Peter, Strã¶Mbergsson, Andreas Minima of Epstein’s zeta function and heights of flat tori Invent. Math. 2006 115 151

[44] Schoenberg, I. J. Positive definite functions on spheres Duke Math. J. 1942 96 108

[45] Schã¼Tte, K., Van Der Waerden, B. L. Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand Eins Platz? Math. Ann. 1951 96 124

[46] Seymour, P. D., Zaslavsky, Thomas Averaging sets: a generalization of mean values and spherical designs Adv. in Math. 1984 213 240

[47] Shult, Ernest, Yanushka, Arthur Near 𝑛-gons and line systems Geom. Dedicata 1980 1 72

[48] Simon, Barry Orthogonal polynomials on the unit circle. Part 1 2005

[49] Stein, Elias M., Weiss, Guido Introduction to Fourier analysis on Euclidean spaces 1971

[50] Strichartz, Robert S. A guide to distribution theory and Fourier transforms 1994

[51] Szegå‘, Gã¡Bor Orthogonal polynomials 1975

[52] Tits, J. Ovoïdes et groupes de Suzuki Arch. Math. 1962 187 198

[53] Vaaler, Jeffrey D. Some extremal functions in Fourier analysis Bull. Amer. Math. Soc. (N.S.) 1985 183 216

[54] Wang, Hsien-Chung Two-point homogeneous spaces Ann. of Math. (2) 1952 177 191

[55] Widder, David Vernon The Laplace Transform 1941

[56] Wilson, Robert A. Vector stabilizers and subgroups of Leech lattice groups J. Algebra 1989 387 408

[57] Yudin, V. A. Minimum potential energy of a point system of charges Diskret. Mat. 1992 115 121

Cité par Sources :