The local Gromov-Witten theory of curves
Journal of the American Mathematical Society, Tome 21 (2008) no. 1, pp. 101-136

Voir la notice de l'article provenant de la source American Mathematical Society

The local Gromov-Witten theory of curves is solved by localization and degeneration methods. Localization is used for the exact evaluation of basic integrals in the local Gromov-Witten theory of $\mathbb P^1$. A TQFT formalism is defined via degeneration to capture higher genus curves. Together, the results provide a complete and effective solution. The local Gromov-Witten theory of curves is equivalent to the local Donaldson-Thomas theory of curves, the quantum cohomology of the Hilbert scheme points of $\mathbb C^2$, and the orbifold quantum cohomology of the symmetric product of $\mathbb C^2$. The results of the paper provide the local Gromov-Witten calculations required for the proofs of these equivalences.
DOI : 10.1090/S0894-0347-06-00545-5

Bryan, Jim 1 ; Pandharipande, Rahul 2

1 Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
2 Department of Mathematics, Princeton University, Princeton, New Jersey 08544
@article{10_1090_S0894_0347_06_00545_5,
     author = {Bryan, Jim and Pandharipande, Rahul},
     title = {The local {Gromov-Witten} theory of curves},
     journal = {Journal of the American Mathematical Society},
     pages = {101--136},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2008},
     doi = {10.1090/S0894-0347-06-00545-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00545-5/}
}
TY  - JOUR
AU  - Bryan, Jim
AU  - Pandharipande, Rahul
TI  - The local Gromov-Witten theory of curves
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 101
EP  - 136
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00545-5/
DO  - 10.1090/S0894-0347-06-00545-5
ID  - 10_1090_S0894_0347_06_00545_5
ER  - 
%0 Journal Article
%A Bryan, Jim
%A Pandharipande, Rahul
%T The local Gromov-Witten theory of curves
%J Journal of the American Mathematical Society
%D 2008
%P 101-136
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00545-5/
%R 10.1090/S0894-0347-06-00545-5
%F 10_1090_S0894_0347_06_00545_5
Bryan, Jim; Pandharipande, Rahul. The local Gromov-Witten theory of curves. Journal of the American Mathematical Society, Tome 21 (2008) no. 1, pp. 101-136. doi: 10.1090/S0894-0347-06-00545-5

[1] Aganagic, Mina, Ooguri, Hirosi, Saulina, Natalia, Vafa, Cumrun Black holes, 𝑞-deformed 2d Yang-Mills, and non-perturbative topological strings Nuclear Phys. B 2005 304 348

[2] Bryan, Jim, Pandharipande, Rahul BPS states of curves in Calabi-Yau 3-folds Geom. Topol. 2001 287 318

[3] Bryan, Jim, Pandharipande, Rahul Curves in Calabi-Yau threefolds and topological quantum field theory Duke Math. J. 2005 369 396

[4] Dijkgraaf, Robbert, Witten, Edward Topological gauge theories and group cohomology Comm. Math. Phys. 1990 393 429

[5] Eliashberg, Y., Givental, A., Hofer, H. Introduction to symplectic field theory Geom. Funct. Anal. 2000 560 673

[6] Faber, C., Pandharipande, R. Hodge integrals and Gromov-Witten theory Invent. Math. 2000 173 199

[7] Faber, C., Pandharipande, R. Logarithmic series and Hodge integrals in the tautological ring Michigan Math. J. 2000 215 252

[8] Freed, Daniel S., Quinn, Frank Chern-Simons theory with finite gauge group Comm. Math. Phys. 1993 435 472

[9] Graber, T., Pandharipande, R. Localization of virtual classes Invent. Math. 1999 487 518

[10] Ionel, Eleny-Nicoleta, Parker, Thomas H. Relative Gromov-Witten invariants Ann. of Math. (2) 2003 45 96

[11] Ionel, Eleny-Nicoleta, Parker, Thomas H. The symplectic sum formula for Gromov-Witten invariants Ann. of Math. (2) 2004 935 1025

[12] Kock, Joachim Frobenius algebras and 2D topological quantum field theories 2004

[13] Li, An-Min, Ruan, Yongbin Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds Invent. Math. 2001 151 218

[14] Li, Jun Stable morphisms to singular schemes and relative stable morphisms J. Differential Geom. 2001 509 578

[15] Li, Jun A degeneration formula of GW-invariants J. Differential Geom. 2002 199 293

[16] Looijenga, Eduard On the tautological ring of ℳ_{ℊ} Invent. Math. 1995 411 419

[17] Macdonald, I. G. Symmetric functions and Hall polynomials 1995

[18] Okounkov, A., Pandharipande, R. Hodge integrals and invariants of the unknot Geom. Topol. 2004 675 699

[19] Okounkov, A., Pandharipande, R. Gromov-Witten theory, Hurwitz theory, and completed cycles Ann. of Math. (2) 2006 517 560

[20] Pandharipande, R. Hodge integrals and degenerate contributions Comm. Math. Phys. 1999 489 506

[21] Pandharipande, R. The Toda equations and the Gromov-Witten theory of the Riemann sphere Lett. Math. Phys. 2000 59 74

[22] Pandharipande, R. Three questions in Gromov-Witten theory 2002 503 512

[23] Thomas, R. P. A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on 𝐾3 fibrations J. Differential Geom. 2000 367 438

Cité par Sources :