Voir la notice de l'article provenant de la source American Mathematical Society
Taylor, Richard 1 ; Yoshida, Teruyoshi 1
@article{10_1090_S0894_0347_06_00542_X,
author = {Taylor, Richard and Yoshida, Teruyoshi},
title = {Compatibility of local and global {Langlands} correspondences},
journal = {Journal of the American Mathematical Society},
pages = {467--493},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2007},
doi = {10.1090/S0894-0347-06-00542-X},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00542-X/}
}
TY - JOUR AU - Taylor, Richard AU - Yoshida, Teruyoshi TI - Compatibility of local and global Langlands correspondences JO - Journal of the American Mathematical Society PY - 2007 SP - 467 EP - 493 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00542-X/ DO - 10.1090/S0894-0347-06-00542-X ID - 10_1090_S0894_0347_06_00542_X ER -
%0 Journal Article %A Taylor, Richard %A Yoshida, Teruyoshi %T Compatibility of local and global Langlands correspondences %J Journal of the American Mathematical Society %D 2007 %P 467-493 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00542-X/ %R 10.1090/S0894-0347-06-00542-X %F 10_1090_S0894_0347_06_00542_X
Taylor, Richard; Yoshida, Teruyoshi. Compatibility of local and global Langlands correspondences. Journal of the American Mathematical Society, Tome 20 (2007) no. 2, pp. 467-493. doi: 10.1090/S0894-0347-06-00542-X
[1] , Introduction to Grothendieck duality theory 1970
[2] Représentations ð-adiques et équations différentielles Invent. Math. 2002 219 284
[3] The unramified principal series of ð-adic groups. I. The spherical function Compositio Math. 1980 387 406
[4] Motifs et formes automorphes: applications du principe de fonctorialité 1990 77 159
[5] Les constantes des équations fonctionnelles des fonctions ð¿ 1973 501 597
[6] , Les schémas de modules de courbes elliptiques 1973 143 316
[7] Elliptic modules Mat. Sb. (N.S.) 1974
[8] Périodes ð-adiques 1994 1 397
[9] Formal groups 1968
[10] On the flatness of models of certain Shimura varieties of PEL-type Math. Ann. 2001 689 727
[11] , Cycle classes and Riemann-Roch for crystalline cohomology Duke Math. J. 1987 501 538
[12] , The geometry and cohomology of some simple Shimura varieties 2001
[13] Weight-monodromy conjecture for ð-adically uniformized varieties Invent. Math. 2005 607 656
[14] , Arithmetic moduli of elliptic curves 1985
[15] , Some consequences of the Riemann hypothesis for varieties over finite fields Invent. Math. 1974 73 77
[16] La suite spectrale des poids en cohomologie de Hyodo-Kato Duke Math. J. 1993 301 337
[17] ð-independence of the trace of monodromy Math. Ann. 1999 321 340
[18] , Ãber die lokale Zetafunktion von Shimuravarietäten. Monodromiefiltration und verschwindende Zyklen in ungleicher Charakteristik Invent. Math. 1982 21 101
[19] Modular forms and ð-adic Hodge theory Invent. Math. 1997 607 620
[20] Weight spectral sequences and independence of ð J. Inst. Math. Jussieu 2003 583 634
[21] Abelian ð-adic representations and elliptic curves 1968
[22] Number theoretic background 1979 3 26
[23] ð-adic étale cohomology and crystalline cohomology in the semi-stable reduction case Invent. Math. 1999 233 411
Cité par Sources :