On the restriction of Deligne-Lusztig characters
Journal of the American Mathematical Society, Tome 20 (2007) no. 2, pp. 573-602

Voir la notice de l'article provenant de la source American Mathematical Society

We study the multiplicities of Deligne-Lusztig characters upon restriction from a finite reductive group to a finite reductive subgroup. The result is a qualitative formula for the growth of multiplicities in terms of complexity. For restrictions from $SO_{2n+1}$ to $SO_{2n}$ we get exact multiplicities.
DOI : 10.1090/S0894-0347-06-00540-6

Reeder, Mark 1

1 Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02467
@article{10_1090_S0894_0347_06_00540_6,
     author = {Reeder, Mark},
     title = {On the restriction of {Deligne-Lusztig} characters},
     journal = {Journal of the American Mathematical Society},
     pages = {573--602},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2007},
     doi = {10.1090/S0894-0347-06-00540-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00540-6/}
}
TY  - JOUR
AU  - Reeder, Mark
TI  - On the restriction of Deligne-Lusztig characters
JO  - Journal of the American Mathematical Society
PY  - 2007
SP  - 573
EP  - 602
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00540-6/
DO  - 10.1090/S0894-0347-06-00540-6
ID  - 10_1090_S0894_0347_06_00540_6
ER  - 
%0 Journal Article
%A Reeder, Mark
%T On the restriction of Deligne-Lusztig characters
%J Journal of the American Mathematical Society
%D 2007
%P 573-602
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00540-6/
%R 10.1090/S0894-0347-06-00540-6
%F 10_1090_S0894_0347_06_00540_6
Reeder, Mark. On the restriction of Deligne-Lusztig characters. Journal of the American Mathematical Society, Tome 20 (2007) no. 2, pp. 573-602. doi: 10.1090/S0894-0347-06-00540-6

[1] Akhiezer, Dmitri, Panyushev, Dmitri Multiplicities in the branching rules and the complexity of homogeneous spaces Mosc. Math. J. 2002

[2] Bannai, Eiichi, Kawanaka, Noriaki, Song, Sung-Yell The character table of the Hecke algebra ℋ(𝒢ℒ_{2𝓃}(ℱ_{𝓆}),𝒮𝓅_{2𝓃}(ℱ_{𝓆})) J. Algebra 1990 320 366

[3] Borel, Armand Linear algebraic groups 1991

[4] Carter, Roger W. Finite groups of Lie type 1993

[5] Carter, Roger Semisimple conjugacy classes and classes in the Weyl group J. Algebra 2003 99 110

[6] Deligne, P., Lusztig, G. Representations of reductive groups over finite fields Ann. of Math. (2) 1976 103 161

[7] Geck, Meinolf, Hiss, Gerhard, Lã¼Beck, Frank, Malle, Gunter, Pfeiffer, Gã¶Tz CHEVIE—a system for computing and processing generic character tables Appl. Algebra Engrg. Comm. Comput. 1996 175 210

[8] Gross, Benedict H. On the centralizer of a regular, semi-simple, stable conjugacy class Represent. Theory 2005 287 296

[9] Gross, Benedict H., Prasad, Dipendra On the decomposition of a representation of 𝑆𝑂_{𝑛} when restricted to 𝑆𝑂_{𝑛-1} Canad. J. Math. 1992 974 1002

[10] Kazhdan, D. Proof of Springer’s hypothesis Israel J. Math. 1977 272 286

[11] Luna, Domingo Sur les orbites fermées des groupes algébriques réductifs Invent. Math. 1972 1 5

[12] Lusztig, George Green functions and character sheaves Ann. of Math. (2) 1990 355 408

[13] Lusztig, George Symmetric spaces over a finite field 1990 57 81

[14] Shoji, Toshiaki On the Green polynomials of a Chevalley group of type 𝐹₄ Comm. Algebra 1982 505 543

[15] Shoji, T. On the Green polynomials of classical groups Invent. Math. 1983 239 267

[16] Shoji, Toshiaki Green functions of reductive groups over a finite field 1987 289 301

[17] Springer, T. A. Trigonometric sums, Green functions of finite groups and representations of Weyl groups Invent. Math. 1976 173 207

[18] Springer, T. A. A construction of representations of Weyl groups Invent. Math. 1978 279 293

[19] Springer, T. A. A purity result for fixed point varieties in flag manifolds J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1984 271 282

[20] Springer, T. A., Steinberg, R. Conjugacy classes 1970 167 266

[21] Steinberg, Robert On the desingularization of the unipotent variety Invent. Math. 1976 209 224

[22] Srinivasan, Bhama Green polynomials of finite classical groups Comm. Algebra 1977 1241 1258

[23] Thoma, Elmar Die Einschränkung der Charaktere von 𝐺𝐿(𝑛,𝑞) auf 𝐺𝐿(𝑛-1,𝑞) Math. Z. 1971 321 338

Cité par Sources :