Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_06_00540_6,
author = {Reeder, Mark},
title = {On the restriction of {Deligne-Lusztig} characters},
journal = {Journal of the American Mathematical Society},
pages = {573--602},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2007},
doi = {10.1090/S0894-0347-06-00540-6},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00540-6/}
}
TY - JOUR AU - Reeder, Mark TI - On the restriction of Deligne-Lusztig characters JO - Journal of the American Mathematical Society PY - 2007 SP - 573 EP - 602 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00540-6/ DO - 10.1090/S0894-0347-06-00540-6 ID - 10_1090_S0894_0347_06_00540_6 ER -
%0 Journal Article %A Reeder, Mark %T On the restriction of Deligne-Lusztig characters %J Journal of the American Mathematical Society %D 2007 %P 573-602 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00540-6/ %R 10.1090/S0894-0347-06-00540-6 %F 10_1090_S0894_0347_06_00540_6
Reeder, Mark. On the restriction of Deligne-Lusztig characters. Journal of the American Mathematical Society, Tome 20 (2007) no. 2, pp. 573-602. doi: 10.1090/S0894-0347-06-00540-6
[1] , Multiplicities in the branching rules and the complexity of homogeneous spaces Mosc. Math. J. 2002
[2] , , The character table of the Hecke algebra â(ð¢â_{2ð}(â±_{ð}),ð®ð _{2ð}(â±_{ð})) J. Algebra 1990 320 366
[3] Linear algebraic groups 1991
[4] Finite groups of Lie type 1993
[5] Semisimple conjugacy classes and classes in the Weyl group J. Algebra 2003 99 110
[6] , Representations of reductive groups over finite fields Ann. of Math. (2) 1976 103 161
[7] , , , , CHEVIEâa system for computing and processing generic character tables Appl. Algebra Engrg. Comm. Comput. 1996 175 210
[8] On the centralizer of a regular, semi-simple, stable conjugacy class Represent. Theory 2005 287 296
[9] , On the decomposition of a representation of ðð_{ð} when restricted to ðð_{ð-1} Canad. J. Math. 1992 974 1002
[10] Proof of Springerâs hypothesis Israel J. Math. 1977 272 286
[11] Sur les orbites fermées des groupes algébriques réductifs Invent. Math. 1972 1 5
[12] Green functions and character sheaves Ann. of Math. (2) 1990 355 408
[13] Symmetric spaces over a finite field 1990 57 81
[14] On the Green polynomials of a Chevalley group of type ð¹â Comm. Algebra 1982 505 543
[15] On the Green polynomials of classical groups Invent. Math. 1983 239 267
[16] Green functions of reductive groups over a finite field 1987 289 301
[17] Trigonometric sums, Green functions of finite groups and representations of Weyl groups Invent. Math. 1976 173 207
[18] A construction of representations of Weyl groups Invent. Math. 1978 279 293
[19] A purity result for fixed point varieties in flag manifolds J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1984 271 282
[20] , Conjugacy classes 1970 167 266
[21] On the desingularization of the unipotent variety Invent. Math. 1976 209 224
[22] Green polynomials of finite classical groups Comm. Algebra 1977 1241 1258
[23] Die Einschränkung der Charaktere von ðºð¿(ð,ð) auf ðºð¿(ð-1,ð) Math. Z. 1971 321 338
Cité par Sources :