Minimal surfaces with the area growth of two planes: The case of infinite symmetry
Journal of the American Mathematical Society, Tome 20 (2007) no. 2, pp. 441-465

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that a connected properly immersed minimal surface in ${\mathbb E}^3$ with infinite symmetry group and area growth constant less than $3\pi$ is a plane, a catenoid, or a Scherk singly-periodic minimal surface. As a consequence, the Scherk minimal surfaces are the only connected periodic minimal desingularizations of the intersections of two planes.
DOI : 10.1090/S0894-0347-06-00537-6

Meeks, William, III 1 ; Wolf, Michael 2

1 Department of Mathematics, University of Massachusetts, Amherst, Massachusetts 01003
2 Department of Mathematics, Rice University, Houston, Texas 77005
@article{10_1090_S0894_0347_06_00537_6,
     author = {Meeks, William, III and Wolf, Michael},
     title = {Minimal surfaces with the area growth of two planes: {The} case of infinite symmetry},
     journal = {Journal of the American Mathematical Society},
     pages = {441--465},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2007},
     doi = {10.1090/S0894-0347-06-00537-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00537-6/}
}
TY  - JOUR
AU  - Meeks, William, III
AU  - Wolf, Michael
TI  - Minimal surfaces with the area growth of two planes: The case of infinite symmetry
JO  - Journal of the American Mathematical Society
PY  - 2007
SP  - 441
EP  - 465
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00537-6/
DO  - 10.1090/S0894-0347-06-00537-6
ID  - 10_1090_S0894_0347_06_00537_6
ER  - 
%0 Journal Article
%A Meeks, William, III
%A Wolf, Michael
%T Minimal surfaces with the area growth of two planes: The case of infinite symmetry
%J Journal of the American Mathematical Society
%D 2007
%P 441-465
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00537-6/
%R 10.1090/S0894-0347-06-00537-6
%F 10_1090_S0894_0347_06_00537_6
Meeks, William, III; Wolf, Michael. Minimal surfaces with the area growth of two planes: The case of infinite symmetry. Journal of the American Mathematical Society, Tome 20 (2007) no. 2, pp. 441-465. doi: 10.1090/S0894-0347-06-00537-6

[1] Hoffman, D., Meeks, W. H., Iii The strong halfspace theorem for minimal surfaces Invent. Math. 1990 373 377

[2] Karcher, H. Embedded minimal surfaces derived from Scherk’s examples Manuscripta Math. 1988 83 114

[3] Lazard-Holly, Hippolyte, Meeks, William H., Iii Classification of doubly-periodic minimal surfaces of genus zero Invent. Math. 2001 1 27

[4] Meeks, William H., Iii Geometric results in classical minimal surface theory 2003 269 306

[5] Meeks, William H., Iii Global problems in classical minimal surface theory 2005 453 469

[6] Meeks, William H., Iii, Pã©Rez, Joaquã­N Conformal properties in classical minimal surface theory 2004 275 335

[7] Meeks, William H., Iii, Pã©Rez, Joaquã­N, Ros, Antonio Uniqueness of the Riemann minimal examples Invent. Math. 1998 107 132

[8] Meeks, William H., Iii, Rosenberg, Harold The global theory of doubly periodic minimal surfaces Invent. Math. 1989 351 379

[9] Meeks, William H., Iii, Rosenberg, Harold The maximum principle at infinity for minimal surfaces in flat three manifolds Comment. Math. Helv. 1990 255 270

[10] Meeks, William H., Iii, Rosenberg, Harold The geometry of periodic minimal surfaces Comment. Math. Helv. 1993 538 578

[11] Pã©Rez, Joaquã­N, Rodrã­Guez, M. Magdalena, Traizet, Martin The classification of doubly periodic minimal tori with parallel ends J. Differential Geom. 2005 523 577

[12] Schoen, Richard M. Uniqueness, symmetry, and embeddedness of minimal surfaces J. Differential Geom. 1983

[13] Traizet, Martin Weierstrass representation of some simply-periodic minimal surfaces Ann. Global Anal. Geom. 2001 77 101

[14] Traizet, Martin An embedded minimal surface with no symmetries J. Differential Geom. 2002 103 153

[15] Weber, M., Wolf, M. Minimal surfaces of least total curvature and moduli spaces of plane polygonal arcs Geom. Funct. Anal. 1998 1129 1170

[16] Weber, Matthias, Wolf, Michael Teichmüller theory and handle addition for minimal surfaces Ann. of Math. (2) 2002 713 795

[17] Wolf, Michael Flat structures, Teichmüller theory and handle addition for minimal surfaces 2005 211 241

Cité par Sources :