Large character sums: Pretentious characters and the Pólya-Vinogradov theorem
Journal of the American Mathematical Society, Tome 20 (2007) no. 2, pp. 357-384

Voir la notice de l'article provenant de la source American Mathematical Society

In 1918 Pólya and Vinogradov gave an upper bound for the maximal size of character sums, which still remains the best known general estimate. One of the main results of this paper provides a substantial improvement of the Pólya-Vinogradov bound for characters of odd, bounded order. In 1977 Montgomery and Vaughan showed how the Pólya-Vinogradov inequality may be sharpened assuming the Generalized Riemann Hypothesis. We give a simple proof of their estimate and provide an improvement for characters of odd, bounded order. The paper also gives characterizations of the characters for which the maximal character sum is large, and it finds a hidden structure among these characters.
DOI : 10.1090/S0894-0347-06-00536-4

Granville, Andrew 1 ; Soundararajan, K. 2, 3

1 Département de Mathématiques et Statistique, Université de Montréal, CP 6128 succ Centre-Ville, Montréal, Quebec H3C 3J7, Canada
2 Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
3 Department of Mathematics, Stanford University, Building 380, 450 Serra Mall, Stanford, California 94305-2125
@article{10_1090_S0894_0347_06_00536_4,
     author = {Granville, Andrew and Soundararajan, K.},
     title = {Large character sums: {Pretentious} characters and the {P\~A{\textthreesuperior}lya-Vinogradov} theorem},
     journal = {Journal of the American Mathematical Society},
     pages = {357--384},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2007},
     doi = {10.1090/S0894-0347-06-00536-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00536-4/}
}
TY  - JOUR
AU  - Granville, Andrew
AU  - Soundararajan, K.
TI  - Large character sums: Pretentious characters and the Pólya-Vinogradov theorem
JO  - Journal of the American Mathematical Society
PY  - 2007
SP  - 357
EP  - 384
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00536-4/
DO  - 10.1090/S0894-0347-06-00536-4
ID  - 10_1090_S0894_0347_06_00536_4
ER  - 
%0 Journal Article
%A Granville, Andrew
%A Soundararajan, K.
%T Large character sums: Pretentious characters and the Pólya-Vinogradov theorem
%J Journal of the American Mathematical Society
%D 2007
%P 357-384
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00536-4/
%R 10.1090/S0894-0347-06-00536-4
%F 10_1090_S0894_0347_06_00536_4
Granville, Andrew; Soundararajan, K. Large character sums: Pretentious characters and the Pólya-Vinogradov theorem. Journal of the American Mathematical Society, Tome 20 (2007) no. 2, pp. 357-384. doi: 10.1090/S0894-0347-06-00536-4

[1] Bateman, P. T., Chowla, S. Averages of character sums Proc. Amer. Math. Soc. 1950 781 787

[2] Burgess, D. A. On character sums and 𝐿-series Proc. London Math. Soc. (3) 1962 193 206

[3] Chowla, S. On the class-number of the corpus 𝑃(√-𝑘) Proc. Nat. Inst. Sci. India 1947 197 200

[4] Davenport, Harold Multiplicative number theory 1980

[5] Deligne, P. Cohomologie étale 1977

[6] Granville, Andrew, Soundararajan, K. Large character sums J. Amer. Math. Soc. 2001 365 397

[7] Granville, Andrew, Soundararajan, K. The spectrum of multiplicative functions Ann. of Math. (2) 2001 407 470

[8] Granville, A., Soundararajan, K. The distribution of values of 𝐿(1,𝜒_{𝑑}) Geom. Funct. Anal. 2003 992 1028

[9] Granville, Andrew, Soundararajan, K. Upper bounds for |𝐿(1,𝜒)| Q. J. Math. 2002 265 284

[10] Hildebrand, Adolf Large values of character sums J. Number Theory 1988 271 296

[11] Montgomery, H. L., Vaughan, R. C. Exponential sums with multiplicative coefficients Invent. Math. 1977 69 82

Cité par Sources :