Parametrization of local CR automorphisms by finite jets and applications
Journal of the American Mathematical Society, Tome 20 (2007) no. 2, pp. 519-572

Voir la notice de l'article provenant de la source American Mathematical Society

For any real-analytic hypersurface $M\subset \mathbb {C}^N$, which does not contain any complex-analytic subvariety of positive dimension, we show that for every point $p\in M$ the local real-analytic CR automorphisms of $M$ fixing $p$ can be parametrized real-analytically by their $\ell _p$ jets at $p$. As a direct application, we derive a Lie group structure for the topological group $\operatorname {Aut}(M,p)$. Furthermore, we also show that the order $\ell _p$ of the jet space in which the group $\operatorname {Aut}(M,p)$ embeds can be chosen to depend upper-semicontinuously on $p$. As a first consequence, it follows that given any compact real-analytic hypersurface $M$ in $\mathbb {C}^N$, there exists an integer $k$ depending only on $M$ such that for every point $p\in M$ germs at $p$ of CR diffeomorphisms mapping $M$ into another real-analytic hypersurface in $\mathbb {C}^N$ are uniquely determined by their $k$-jet at that point. Another consequence is the following boundary version of H. Cartan’s uniqueness theorem: given any bounded domain $\Omega$ with smooth real-analytic boundary, there exists an integer $k$ depending only on $\partial \Omega$ such that if $H\colon \Omega \to \Omega$ is a proper holomorphic mapping extending smoothly up to $\partial \Omega$ near some point $p\in \partial \Omega$ with the same $k$-jet at $p$ with that of the identity mapping, then necessarily $H=\textrm {Id}$. Our parametrization theorem also holds for the stability group of any essentially finite minimal real-analytic CR manifold of arbitrary codimension. One of the new main tools developed in the paper, which may be of independent interest, is a parametrization theorem for invertible solutions of a certain kind of singular analytic equations, which roughly speaking consists of inverting certain families of parametrized maps with singularities.
DOI : 10.1090/S0894-0347-06-00534-0

Lamel, Bernhard 1 ; Mir, Nordine 2

1 Universität Wien, Fakultät für Mathematik, Nordbergstrasse 15, A-1090 Wien, Austria
2 Université de Rouen, Laboratoire de Mathématiques Raphaël Salem, UMR 6085 CNRS, Avenue de l’Université, B.P. 12, 76801 Saint Etienne du Rouvray, France
@article{10_1090_S0894_0347_06_00534_0,
     author = {Lamel, Bernhard and Mir, Nordine},
     title = {Parametrization of local {CR} automorphisms by finite jets and applications},
     journal = {Journal of the American Mathematical Society},
     pages = {519--572},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2007},
     doi = {10.1090/S0894-0347-06-00534-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00534-0/}
}
TY  - JOUR
AU  - Lamel, Bernhard
AU  - Mir, Nordine
TI  - Parametrization of local CR automorphisms by finite jets and applications
JO  - Journal of the American Mathematical Society
PY  - 2007
SP  - 519
EP  - 572
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00534-0/
DO  - 10.1090/S0894-0347-06-00534-0
ID  - 10_1090_S0894_0347_06_00534_0
ER  - 
%0 Journal Article
%A Lamel, Bernhard
%A Mir, Nordine
%T Parametrization of local CR automorphisms by finite jets and applications
%J Journal of the American Mathematical Society
%D 2007
%P 519-572
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00534-0/
%R 10.1090/S0894-0347-06-00534-0
%F 10_1090_S0894_0347_06_00534_0
Lamel, Bernhard; Mir, Nordine. Parametrization of local CR automorphisms by finite jets and applications. Journal of the American Mathematical Society, Tome 20 (2007) no. 2, pp. 519-572. doi: 10.1090/S0894-0347-06-00534-0

[1] Baouendi, M. S., Ebenfelt, P., Rothschild, L. P. Algebraicity of holomorphic mappings between real algebraic sets in 𝐶ⁿ Acta Math. 1996 225 273

[2] Baouendi, M. S., Ebenfelt, P., Rothschild, Linda Preiss Parametrization of local biholomorphisms of real analytic hypersurfaces Asian J. Math. 1997 1 16

[3] Baouendi, M. S., Ebenfelt, P., Rothschild, Linda Preiss Rational dependence of smooth and analytic CR mappings on their jets Math. Ann. 1999 205 249

[4] Baouendi, M. S., Ebenfelt, P., Rothschild, Linda Preiss Convergence and finite determination of formal CR mappings J. Amer. Math. Soc. 2000 697 723

[5] Baouendi, M. S., Ebenfelt, P., Preiss Rothschild, Linda Local geometric properties of real submanifolds in complex space Bull. Amer. Math. Soc. (N.S.) 2000 309 336

[6] Baouendi, M. S., Huang, Xiaojun, Preiss Rothschild, Linda Regularity of CR mappings between algebraic hypersurfaces Invent. Math. 1996 13 36

[7] Baouendi, M. S., Jacobowitz, H., Trã¨Ves, F. On the analyticity of CR mappings Ann. of Math. (2) 1985 365 400

[8] Baouendi, M. Salah, Ebenfelt, Peter, Rothschild, Linda Preiss Real submanifolds in complex space and their mappings 1999

[9] Bloom, Thomas, Graham, Ian On “type” conditions for generic real submanifolds of 𝐶ⁿ Invent. Math. 1977 217 243

[10] Boggess, Albert CR manifolds and the tangential Cauchy-Riemann complex 1991

[11] Bryant, R. L., Chern, S. S., Gardner, R. B., Goldschmidt, H. L., Griffiths, P. A. Exterior differential systems 1991

[12] Burns, D., Jr., Shnider, S. Real hypersurfaces in complex manifolds 1977 141 168

[13] Burns, Daniel M., Krantz, Steven G. Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary J. Amer. Math. Soc. 1994 661 676

[14] Chern, S. S., Moser, J. K. Real hypersurfaces in complex manifolds Acta Math. 1974 219 271

[15] Diederich, K., Webster, S. M. A reflection principle for degenerate real hypersurfaces Duke Math. J. 1980 835 843

[16] Diederich, Klas, Fornaess, John E. Pseudoconvex domains with real-analytic boundary Ann. of Math. (2) 1978 371 384

[17] Dineen, Seã¡N Complex analysis on infinite-dimensional spaces 1999

[18] Ebenfelt, Peter Uniformly Levi degenerate CR manifolds: the 5-dimensional case Duke Math. J. 2001 37 80

[19] Ebenfelt, P., Lamel, B., Zaitsev, D. Finite jet determination of local analytic CR automorphisms and their parametrization by 2-jets in the finite type case Geom. Funct. Anal. 2003 546 573

[20] Fefferman, Charles The Bergman kernel and biholomorphic mappings of pseudoconvex domains Invent. Math. 1974 1 65

[21] Floret, Klaus, Wloka, Joseph Einführung in die Theorie der lokalkonvexen Räume 1968

[22] Golubitsky, M., Guillemin, V. Stable mappings and their singularities 1973

[23] Hodge, W. V. D., Pedoe, D. Methods of Algebraic Geometry. Vol. I 1947

[24] Hã¶Rmander, Lars An introduction to complex analysis in several variables 1990

[25] Huang, Xiao Jun Some applications of Bell’s theorem to weakly pseudoconvex domains Pacific J. Math. 1993 305 315

[26] Huang, Xiao Jun A boundary rigidity problem for holomorphic mappings on some weakly pseudoconvex domains Canad. J. Math. 1995 405 420

[27] Huang, Xiaojun Local equivalence problems for real submanifolds in complex spaces 2004 109 163

[28] Kohn, J. J. Boundary behavior of 𝛿 on weakly pseudo-convex manifolds of dimension two J. Differential Geometry 1972 523 542

[29] Krantz, Steven G., Parks, Harold R. A primer of real analytic functions 1992

[30] Raä­Kov, D. A. On two classes of locally convex spaces which are important in applications Voronež. Gos. Univ. Trudy Sem. Funkcional. Anal. 1957 22 34

[31] Rothschild, Linda Preiss Mappings between real submanifolds in complex space 2003 253 266

[32] Sebastiã£O E Silva, Josã© Su certe classi di spazi localmente convessi importanti per le applicazioni Rend. Mat. e Appl. (5) 1955 388 410

[33] Stanton, Nancy K. Infinitesimal CR automorphisms of real hypersurfaces Amer. J. Math. 1996 209 233

[34] Tanaka, Noboru On the pseudo-conformal geometry of hypersurfaces of the space of 𝑛 complex variables J. Math. Soc. Japan 1962 397 429

[35] Tumanov, A. E. Extension of CR-functions into a wedge from a manifold of finite type Mat. Sb. (N.S.) 1988 128 139

[36] Vitushkin, A. G. Holomorphic extension of mappings of compact hypersurfaces Izv. Akad. Nauk SSSR Ser. Mat. 1982

[37] Several complex variables. I 1990

[38] Webster, S. M. On the mapping problem for algebraic real hypersurfaces Invent. Math. 1977 53 68

[39] Zaitsev, Dmitri Germs of local automorphisms of real-analytic CR structures and analytic dependence on 𝑘-jets Math. Res. Lett. 1997 823 842

Cité par Sources :