Noncommutative maximal ergodic theorems
Journal of the American Mathematical Society, Tome 20 (2007) no. 2, pp. 385-439

Voir la notice de l'article provenant de la source American Mathematical Society

This paper is devoted to the study of various maximal ergodic theorems in noncommutative $L_p$-spaces. In particular, we prove the noncommutative analogue of the classical Dunford-Schwartz maximal ergodic inequality for positive contractions on $L_p$ and the analogue of Stein’s maximal inequality for symmetric positive contractions. We also obtain the corresponding individual ergodic theorems. We apply these results to a family of natural examples which frequently appear in von Neumann algebra theory and in quantum probability.
DOI : 10.1090/S0894-0347-06-00533-9

Junge, Marius 1 ; Xu, Quanhua 2

1 Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, Illinois 61801
2 Laboratoire de Mathématiques, Université de Franche-Comté, 16 rue de Gray, 25030 Besançon, Cedex, France
@article{10_1090_S0894_0347_06_00533_9,
     author = {Junge, Marius and Xu, Quanhua},
     title = {Noncommutative maximal ergodic theorems},
     journal = {Journal of the American Mathematical Society},
     pages = {385--439},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2007},
     doi = {10.1090/S0894-0347-06-00533-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00533-9/}
}
TY  - JOUR
AU  - Junge, Marius
AU  - Xu, Quanhua
TI  - Noncommutative maximal ergodic theorems
JO  - Journal of the American Mathematical Society
PY  - 2007
SP  - 385
EP  - 439
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00533-9/
DO  - 10.1090/S0894-0347-06-00533-9
ID  - 10_1090_S0894_0347_06_00533_9
ER  - 
%0 Journal Article
%A Junge, Marius
%A Xu, Quanhua
%T Noncommutative maximal ergodic theorems
%J Journal of the American Mathematical Society
%D 2007
%P 385-439
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00533-9/
%R 10.1090/S0894-0347-06-00533-9
%F 10_1090_S0894_0347_06_00533_9
Junge, Marius; Xu, Quanhua. Noncommutative maximal ergodic theorems. Journal of the American Mathematical Society, Tome 20 (2007) no. 2, pp. 385-439. doi: 10.1090/S0894-0347-06-00533-9

[1] Bergh, Jã¶Ran, Lã¶Fstrã¶M, Jã¶Rgen Interpolation spaces. An introduction 1976

[2] Biane, Philippe Free hypercontractivity Comm. Math. Phys. 1997 457 474

[3] Blanchard, Etienne F., Dykema, Kenneth J. Embeddings of reduced free products of operator algebras Pacific J. Math. 2001 1 19

[4] Boå¼Ejko, Marek Positive-definite kernels, length functions on groups and a noncommutative von Neumann inequality Studia Math. 1989 107 118

[5] Boå¼Ejko, Marek Ultracontractivity and strong Sobolev inequality for 𝑞-Ornstein-Uhlenbeck semigroup (-1<𝑞<1) Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1999 203 220

[6] Boå¼Ejko, Marek, Kã¼Mmerer, Burkhard, Speicher, Roland 𝑞-Gaussian processes: non-commutative and classical aspects Comm. Math. Phys. 1997 129 154

[7] Boå¼Ejko, Marek, Speicher, Roland An example of a generalized Brownian motion Comm. Math. Phys. 1991 519 531

[8] Boå¼Ejko, Marek, Speicher, Roland Interpolations between bosonic and fermionic relations given by generalized Brownian motions Math. Z. 1996 135 159

[9] Carlen, Eric A., Lieb, Elliott H. Optimal hypercontractivity for Fermi fields and related noncommutative integration inequalities Comm. Math. Phys. 1993 27 46

[10] Choda, Marie Reduced free products of completely positive maps and entropy for free product of automorphisms Publ. Res. Inst. Math. Sci. 1996 371 382

[11] Choi, Man Duen, Effros, Edward G. Injectivity and operator spaces J. Functional Analysis 1977 156 209

[12] Conze, J.-P., Dang-Ngoc, N. Ergodic theorems for noncommutative dynamical systems Invent. Math. 1978 1 15

[13] Cuculescu, I. Martingales on von Neumann algebras J. Multivariate Anal. 1971 17 27

[14] Nghiãªm ĐÁº·Ng NgọC Pointwise convergence of martingales in von Neumann algebras Israel J. Math. 1979

[15] Defant, Andreas, Junge, Marius Maximal theorems of Menchoff-Rademacher type in non-commutative 𝐿_{𝑞}-spaces J. Funct. Anal. 2004 322 355

[16] Dunford, Nelson, Schwartz, Jacob T. Linear Operators. I. General Theory 1958

[17] Dykema, Kenneth J. Factoriality and Connes’ invariant 𝑇(ℳ) for free products of von Neumann algebras J. Reine Angew. Math. 1994 159 180

[18] Fack, Thierry, Kosaki, Hideki Generalized 𝑠-numbers of 𝜏-measurable operators Pacific J. Math. 1986 269 300

[19] Gol′Dshteä­N, M. Sh. Theorems on almost everywhere convergence in von Neumann algebras J. Operator Theory 1981 233 311

[20] Goldstein, M. S., Grabarnik, G. Ya. Almost sure convergence theorems in von Neumann algebras Israel J. Math. 1991 161 182

[21] Haagerup, Uffe Normal weights on 𝑊*-algebras J. Functional Analysis 1975 302 317

[22] Haagerup, Uffe 𝐿^{𝑝}-spaces associated with an arbitrary von Neumann algebra 1979 175 184

[23] Operator algebras and applications. Part 1 1982

[24] Haagerup, Uffe An example of a nonnuclear 𝐶*-algebra, which has the metric approximation property Invent. Math. 1978/79 279 293

[25] Hiai, Fumio 𝑞-deformed Araki-Woods algebras 2003 169 202

[26] Holmstedt, Tord Interpolation of quasi-normed spaces Math. Scand. 1970 177 199

[27] Jajte, Ryszard Strong limit theorems in noncommutative probability 1985

[28] Jajte, Ryszard Strong limit theorems in noncommutative 𝐿₂-spaces 1991

[29] Junge, Marius Doob’s inequality for non-commutative martingales J. Reine Angew. Math. 2002 149 190

[30] Junge, Marius, Xu, Quanhua Théorèmes ergodiques maximaux dans les espaces 𝐿_{𝑝} non commutatifs C. R. Math. Acad. Sci. Paris 2002 773 778

[31] Junge, Marius, Xu, Quanhua Noncommutative Burkholder/Rosenthal inequalities Ann. Probab. 2003 948 995

[32] Junge, Marius, Xu, Quanhua On the best constants in some non-commutative martingale inequalities Bull. London Math. Soc. 2005 243 253

[33] Kadison, Richard V. A generalized Schwarz inequality and algebraic invariants for operator algebras Ann. of Math. (2) 1952 494 503

[34] Kosaki, Hideki Applications of the complex interpolation method to a von Neumann algebra: noncommutative 𝐿^{𝑝}-spaces J. Funct. Anal. 1984 29 78

[35] Kã¼Mmerer, Burkhard A non-commutative individual ergodic theorem Invent. Math. 1978 139 145

[36] Lance, E. Christopher Ergodic theorems for convex sets and operator algebras Invent. Math. 1976 201 214

[37] Musat, Magdalena Interpolation between non-commutative BMO and non-commutative 𝐿_{𝑝}-spaces J. Funct. Anal. 2003 195 225

[38] Nou, Alexandre Non injectivity of the 𝑞-deformed von Neumann algebra Math. Ann. 2004 17 38

[39] Parthasarathy, K. R. An introduction to quantum stochastic calculus 1992

[40] Paulsen, Vern Completely bounded maps and operator algebras 2002

[41] Pisier, Gilles Non-commutative vector valued 𝐿_{𝑝}-spaces and completely 𝑝-summing maps Astérisque 1998

[42] Pisier, Gilles, Xu, Quanhua Non-commutative martingale inequalities Comm. Math. Phys. 1997 667 698

[43] Pisier, Gilles, Xu, Quanhua Non-commutative 𝐿^{𝑝}-spaces 2003 1459 1517

[44] Randrianantoanina, Narcisse Non-commutative martingale transforms J. Funct. Anal. 2002 181 212

[45] Ricard, ÉRic Factoriality of 𝑞-Gaussian von Neumann algebras Comm. Math. Phys. 2005 659 665

[46] Shlyakhtenko, Dimitri Free quasi-free states Pacific J. Math. 1997 329 368

[47] Starr, Norton Operator limit theorems Trans. Amer. Math. Soc. 1966 90 115

[48] Stein, E. M. On the maximal ergodic theorem Proc. Nat. Acad. Sci. U.S.A. 1961 1894 1897

[49] Stein, Elias M. Topics in harmonic analysis related to the Littlewood-Paley theory 1970

[50] Voiculescu, Dan Symmetries of some reduced free product 𝐶*-algebras 1985 556 588

[51] Voiculescu, D. V., Dykema, K. J., Nica, A. Free random variables 1992

[52] Yeadon, F. J. Ergodic theorems for semifinite von Neumann algebras. I J. London Math. Soc. (2) 1977 326 332

[53] Yosida, Kã´Saku Functional analysis 1968

[54] Zygmund, A. Trigonometric series. Vol. I, II 2002

Cité par Sources :