Voir la notice de l'article provenant de la source American Mathematical Society
Junge, Marius 1 ; Xu, Quanhua 2
@article{10_1090_S0894_0347_06_00533_9,
author = {Junge, Marius and Xu, Quanhua},
title = {Noncommutative maximal ergodic theorems},
journal = {Journal of the American Mathematical Society},
pages = {385--439},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2007},
doi = {10.1090/S0894-0347-06-00533-9},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00533-9/}
}
TY - JOUR AU - Junge, Marius AU - Xu, Quanhua TI - Noncommutative maximal ergodic theorems JO - Journal of the American Mathematical Society PY - 2007 SP - 385 EP - 439 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00533-9/ DO - 10.1090/S0894-0347-06-00533-9 ID - 10_1090_S0894_0347_06_00533_9 ER -
%0 Journal Article %A Junge, Marius %A Xu, Quanhua %T Noncommutative maximal ergodic theorems %J Journal of the American Mathematical Society %D 2007 %P 385-439 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00533-9/ %R 10.1090/S0894-0347-06-00533-9 %F 10_1090_S0894_0347_06_00533_9
Junge, Marius; Xu, Quanhua. Noncommutative maximal ergodic theorems. Journal of the American Mathematical Society, Tome 20 (2007) no. 2, pp. 385-439. doi: 10.1090/S0894-0347-06-00533-9
[1] , Interpolation spaces. An introduction 1976
[2] Free hypercontractivity Comm. Math. Phys. 1997 457 474
[3] , Embeddings of reduced free products of operator algebras Pacific J. Math. 2001 1 19
[4] Positive-definite kernels, length functions on groups and a noncommutative von Neumann inequality Studia Math. 1989 107 118
[5] Ultracontractivity and strong Sobolev inequality for ð-Ornstein-Uhlenbeck semigroup (-1<ð<1) Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1999 203 220
[6] , , ð-Gaussian processes: non-commutative and classical aspects Comm. Math. Phys. 1997 129 154
[7] , An example of a generalized Brownian motion Comm. Math. Phys. 1991 519 531
[8] , Interpolations between bosonic and fermionic relations given by generalized Brownian motions Math. Z. 1996 135 159
[9] , Optimal hypercontractivity for Fermi fields and related noncommutative integration inequalities Comm. Math. Phys. 1993 27 46
[10] Reduced free products of completely positive maps and entropy for free product of automorphisms Publ. Res. Inst. Math. Sci. 1996 371 382
[11] , Injectivity and operator spaces J. Functional Analysis 1977 156 209
[12] , Ergodic theorems for noncommutative dynamical systems Invent. Math. 1978 1 15
[13] Martingales on von Neumann algebras J. Multivariate Anal. 1971 17 27
[14] Pointwise convergence of martingales in von Neumann algebras Israel J. Math. 1979
[15] , Maximal theorems of Menchoff-Rademacher type in non-commutative ð¿_{ð}-spaces J. Funct. Anal. 2004 322 355
[16] , Linear Operators. I. General Theory 1958
[17] Factoriality and Connesâ invariant ð(â³) for free products of von Neumann algebras J. Reine Angew. Math. 1994 159 180
[18] , Generalized ð -numbers of ð-measurable operators Pacific J. Math. 1986 269 300
[19] Theorems on almost everywhere convergence in von Neumann algebras J. Operator Theory 1981 233 311
[20] , Almost sure convergence theorems in von Neumann algebras Israel J. Math. 1991 161 182
[21] Normal weights on ð*-algebras J. Functional Analysis 1975 302 317
[22] ð¿^{ð}-spaces associated with an arbitrary von Neumann algebra 1979 175 184
[23] Operator algebras and applications. Part 1 1982
[24] An example of a nonnuclear ð¶*-algebra, which has the metric approximation property Invent. Math. 1978/79 279 293
[25] ð-deformed Araki-Woods algebras 2003 169 202
[26] Interpolation of quasi-normed spaces Math. Scand. 1970 177 199
[27] Strong limit theorems in noncommutative probability 1985
[28] Strong limit theorems in noncommutative ð¿â-spaces 1991
[29] Doobâs inequality for non-commutative martingales J. Reine Angew. Math. 2002 149 190
[30] , Théorèmes ergodiques maximaux dans les espaces ð¿_{ð} non commutatifs C. R. Math. Acad. Sci. Paris 2002 773 778
[31] , Noncommutative Burkholder/Rosenthal inequalities Ann. Probab. 2003 948 995
[32] , On the best constants in some non-commutative martingale inequalities Bull. London Math. Soc. 2005 243 253
[33] A generalized Schwarz inequality and algebraic invariants for operator algebras Ann. of Math. (2) 1952 494 503
[34] Applications of the complex interpolation method to a von Neumann algebra: noncommutative ð¿^{ð}-spaces J. Funct. Anal. 1984 29 78
[35] A non-commutative individual ergodic theorem Invent. Math. 1978 139 145
[36] Ergodic theorems for convex sets and operator algebras Invent. Math. 1976 201 214
[37] Interpolation between non-commutative BMO and non-commutative ð¿_{ð}-spaces J. Funct. Anal. 2003 195 225
[38] Non injectivity of the ð-deformed von Neumann algebra Math. Ann. 2004 17 38
[39] An introduction to quantum stochastic calculus 1992
[40] Completely bounded maps and operator algebras 2002
[41] Non-commutative vector valued ð¿_{ð}-spaces and completely ð-summing maps Astérisque 1998
[42] , Non-commutative martingale inequalities Comm. Math. Phys. 1997 667 698
[43] , Non-commutative ð¿^{ð}-spaces 2003 1459 1517
[44] Non-commutative martingale transforms J. Funct. Anal. 2002 181 212
[45] Factoriality of ð-Gaussian von Neumann algebras Comm. Math. Phys. 2005 659 665
[46] Free quasi-free states Pacific J. Math. 1997 329 368
[47] Operator limit theorems Trans. Amer. Math. Soc. 1966 90 115
[48] On the maximal ergodic theorem Proc. Nat. Acad. Sci. U.S.A. 1961 1894 1897
[49] Topics in harmonic analysis related to the Littlewood-Paley theory 1970
[50] Symmetries of some reduced free product ð¶*-algebras 1985 556 588
[51] , , Free random variables 1992
[52] Ergodic theorems for semifinite von Neumann algebras. I J. London Math. Soc. (2) 1977 326 332
[53] Functional analysis 1968
[54] Trigonometric series. Vol. I, II 2002
Cité par Sources :