Universal characteristic factors and Furstenberg averages
Journal of the American Mathematical Society, Tome 20 (2007) no. 1, pp. 53-97

Voir la notice de l'article provenant de la source American Mathematical Society

Let $X=(X^0,\mathcal {B},\mu ,T)$ be an ergodic probability measure-preserving system. For a natural number $k$ we consider the averages \begin{equation*} \tag {*} \frac {1}{N}\sum _{n=1}^N \prod _{j=1}^k f_j(T^{a_jn}x) \end{equation*} where $f_j \in L^{\infty }(\mu )$, and $a_j$ are integers. A factor of $X$ is characteristic for averaging schemes of length $k$ (or $k$-characteristic) if for any nonzero distinct integers $a_1,\ldots ,a_k$, the limiting $L^2(\mu )$ behavior of the averages in (*) is unaltered if we first project the functions $f_j$ onto the factor. A factor of $X$ is a $k$-universal characteristic factor ($k$-u.c.f.) if it is a $k$-characteristic factor, and a factor of any $k$-characteristic factor. We show that there exists a unique $k$-u.c.f., and it has the structure of a $(k-1)$-step nilsystem, more specifically an inverse limit of $(k-1)$-step nilflows. Using this we show that the averages in (*) converge in $L^2(\mu )$. This provides an alternative proof to the one given by Host and Kra.
DOI : 10.1090/S0894-0347-06-00532-7

Ziegler, Tamar 1, 2

1 Department of Mathematics, The Ohio State University, 100 Math Tower, 231 West 18th Avenue, Columbus, Ohio 43210
2 School of Mathematics, The Institute of Advanced Study, Princeton, New Jersey 08540
@article{10_1090_S0894_0347_06_00532_7,
     author = {Ziegler, Tamar},
     title = {Universal characteristic factors and {Furstenberg} averages},
     journal = {Journal of the American Mathematical Society},
     pages = {53--97},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2007},
     doi = {10.1090/S0894-0347-06-00532-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00532-7/}
}
TY  - JOUR
AU  - Ziegler, Tamar
TI  - Universal characteristic factors and Furstenberg averages
JO  - Journal of the American Mathematical Society
PY  - 2007
SP  - 53
EP  - 97
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00532-7/
DO  - 10.1090/S0894-0347-06-00532-7
ID  - 10_1090_S0894_0347_06_00532_7
ER  - 
%0 Journal Article
%A Ziegler, Tamar
%T Universal characteristic factors and Furstenberg averages
%J Journal of the American Mathematical Society
%D 2007
%P 53-97
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00532-7/
%R 10.1090/S0894-0347-06-00532-7
%F 10_1090_S0894_0347_06_00532_7
Ziegler, Tamar. Universal characteristic factors and Furstenberg averages. Journal of the American Mathematical Society, Tome 20 (2007) no. 1, pp. 53-97. doi: 10.1090/S0894-0347-06-00532-7

[1] Bergelson, V. Weakly mixing PET Ergodic Theory Dynam. Systems 1987 337 349

[2] Becker, Howard, Kechris, Alexander S. The descriptive set theory of Polish group actions 1996

[3] Bourgain, Jean Pointwise ergodic theorems for arithmetic sets Inst. Hautes Études Sci. Publ. Math. 1989 5 45

[4] Conze, Jean-Pierre, Lesigne, Emmanuel Théorèmes ergodiques pour des mesures diagonales Bull. Soc. Math. France 1984 143 175

[5] Conze, Jean-Pierre, Lesigne, Emmanuel Sur un théorème ergodique pour des mesures diagonales 1988 1 31

[6] Conze, Jean-Pierre, Lesigne, Emmanuel Sur un théorème ergodique pour des mesures diagonales C. R. Acad. Sci. Paris Sér. I Math. 1988 491 493

[7] Furstenberg, Harry Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions J. Analyse Math. 1977 204 256

[8] Furstenberg, Hillel, Weiss, Benjamin A mean ergodic theorem for (1/𝑁)∑^{𝑁}_{𝑛 1996 193 227

[9] Gorbatsevich, V. V., Onishchik, A. L., Vinberg, E. B. Foundations of Lie theory and Lie transformation groups 1997

[10] Gowers, W. T. A new proof of Szemerédi’s theorem Geom. Funct. Anal. 2001 465 588

[11] Host, Bernard, Kra, Bryna Convergence of Conze-Lesigne averages Ergodic Theory Dynam. Systems 2001 493 509

[12] Host, Bernard, Kra, Bryna An odd Furstenberg-Szemerédi theorem and quasi-affine systems J. Anal. Math. 2002 183 220

[13] Host, Bernard, Kra, Bryna Nonconventional ergodic averages and nilmanifolds Ann. of Math. (2) 2005 397 488

[14] Lazard, Michel Sur les groupes nilpotents et les anneaux de Lie Ann. Sci. École Norm. Sup. (3) 1954 101 190

[15] Leibman, A. Polynomial sequences in groups J. Algebra 1998 189 206

[16] Leibman, A. Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold Ergodic Theory Dynam. Systems 2005 201 213

[17] Lesigne, Emmanuel Résolution d’une équation fonctionnelle Bull. Soc. Math. France 1984 177 196

[18] Lesigne, Emmanuel Théorèmes ergodiques ponctuels pour des mesures diagonales. Cas des systèmes distaux Ann. Inst. H. Poincaré Probab. Statist. 1987 593 612

[19] Lesigne, Emmanuel Théorèmes ergodiques pour une translation sur un nilvariété Ergodic Theory Dynam. Systems 1989 115 126

[20] Lesigne, E. Équations fonctionnelles, couplages de produits gauches et théorèmes ergodiques pour mesures diagonales Bull. Soc. Math. France 1993 315 351

[21] Lusin, Nicolas Leçons sur les ensembles analytiques et leurs applications 1972

[22] Petersen, Karl Ergodic theory 1983

[23] Parry, William Ergodic properties of affine transformations and flows on nilmanifolds Amer. J. Math. 1969 757 771

[24] Parry, William Dynamical systems on nilmanifolds Bull. London Math. Soc. 1970 37 40

[25] Parry, William Dynamical representations in nilmanifolds Compositio Math. 1973 159 174

[26] Rudolph, Daniel J. Eigenfunctions of 𝑇×𝑆 and the Conze-Lesigne algebra 1995 369 432

[27] Shah, Nimish A. Invariant measures and orbit closures on homogeneous spaces for actions of subgroups generated by unipotent elements 1998 229 271

[28] Ziegler, T. A non-conventional ergodic theorem for a nilsystem Ergodic Theory Dynam. Systems 2005 1357 1370

[29] Zimmer, Robert J. Extensions of ergodic group actions Illinois J. Math. 1976 373 409

Cité par Sources :