Unitary Shimura correspondences for split real groups
Journal of the American Mathematical Society, Tome 20 (2007) no. 3, pp. 701-751

Voir la notice de l'article provenant de la source American Mathematical Society

We find a relationship between certain complementary series representations for nonlinear coverings of split simple groups, and spherical complementary series for (different) linear groups. The main technique is Barbasch’s method of calculating some intertwining operators purely in terms of the Weyl group.
DOI : 10.1090/S0894-0347-06-00530-3

Adams, J. 1 ; Barbasch, D. 2 ; Paul, A. 3 ; Trapa, P. 4 ; Vogan, D., Jr. 5

1 Department of Mathematics, University of Maryland, College Park, Maryland 20742
2 Department of Mathematics, Cornell University, Ithaca, New York 14853
3 Department of Mathematics, Western Michigan University, Kalamazoo, Michigan 49008
4 Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
5 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02138
@article{10_1090_S0894_0347_06_00530_3,
     author = {Adams, J. and Barbasch, D. and Paul, A. and Trapa, P. and Vogan, D., Jr.},
     title = {Unitary {Shimura} correspondences for split real groups},
     journal = {Journal of the American Mathematical Society},
     pages = {701--751},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2007},
     doi = {10.1090/S0894-0347-06-00530-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00530-3/}
}
TY  - JOUR
AU  - Adams, J.
AU  - Barbasch, D.
AU  - Paul, A.
AU  - Trapa, P.
AU  - Vogan, D., Jr.
TI  - Unitary Shimura correspondences for split real groups
JO  - Journal of the American Mathematical Society
PY  - 2007
SP  - 701
EP  - 751
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00530-3/
DO  - 10.1090/S0894-0347-06-00530-3
ID  - 10_1090_S0894_0347_06_00530_3
ER  - 
%0 Journal Article
%A Adams, J.
%A Barbasch, D.
%A Paul, A.
%A Trapa, P.
%A Vogan, D., Jr.
%T Unitary Shimura correspondences for split real groups
%J Journal of the American Mathematical Society
%D 2007
%P 701-751
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00530-3/
%R 10.1090/S0894-0347-06-00530-3
%F 10_1090_S0894_0347_06_00530_3
Adams, J.; Barbasch, D.; Paul, A.; Trapa, P.; Vogan, D., Jr. Unitary Shimura correspondences for split real groups. Journal of the American Mathematical Society, Tome 20 (2007) no. 3, pp. 701-751. doi: 10.1090/S0894-0347-06-00530-3

[1] Adams, Jeffrey Nonlinear covers of real groups Int. Math. Res. Not. 2004 4031 4047

[2] Adams, Jeffrey, Barbasch, Dan Genuine representations of the metaplectic group Compositio Math. 1998 23 66

[3] Barbasch, Dan, Vogan, David A., Jr. The local structure of characters J. Functional Analysis 1980 27 55

[4] Barbasch, Dan Relevant and petite 𝐾-types for split groups 2004 35 71

[5] Bourbaki, Nicolas Éléments de mathématique 1981 290

[6] Collingwood, David H., Mcgovern, William M. Nilpotent orbits in semisimple Lie algebras 1993

[7] Ciubotaru, Dan The unitary 𝕀-spherical dual for split 𝕡-adic groups of type 𝔽₄ Represent. Theory 2005 94 137

[8] Curtis, Charles W., Reiner, Irving Methods of representation theory. Vol. I 1981

[9] Howe, Roger Wave front sets of representations of Lie groups 1981 117 140

[10] Howe, Roger On a notion of rank for unitary representations of the classical groups 1982 223 331

[11] Howe, Roger Transcending classical invariant theory J. Amer. Math. Soc. 1989 535 552

[12] Huang, Jing-Song The unitary dual of the universal covering group of 𝐺𝐿(𝑛,𝑅) Duke Math. J. 1990 705 745

[13] Huang, Jing-Song Metaplectic correspondences and unitary representations Compositio Math. 1991 309 322

[14] Knapp, Anthony W. Representation theory of semisimple groups 1986

[15] Li, Jian-Shu Singular unitary representations of classical groups Invent. Math. 1989 237 255

[16] Li, Jian-Shu On the classification of irreducible low rank unitary representations of classical groups Compositio Math. 1989 29 48

[17] Li, Jian-Shu On the singular rank of a representation Proc. Amer. Math. Soc. 1989 567 571

[18] Matsumoto, Hideya Sur les sous-groupes arithmétiques des groupes semi-simples déployés Ann. Sci. École Norm. Sup. (4) 1969 1 62

[19] Przebinda, Tomasz The duality correspondence of infinitesimal characters Colloq. Math. 1996 93 102

[20] Salamanca-Riba, Susana On the unitary dual of some classical Lie groups Compositio Math. 1988 251 303

[21] Savin, Gordan Local Shimura correspondence Math. Ann. 1988 185 190

[22] Savin, Gordan On unramified representations of covering groups J. Reine Angew. Math. 2004 111 134

[23] Schmid, Wilfried On the characters of the discrete series. The Hermitian symmetric case Invent. Math. 1975 47 144

[24] Steinberg, Robert Générateurs, relations et revêtements de groupes algébriques 1962 113 127

[25] Vogan, David A., Jr. The algebraic structure of the representation of semisimple Lie groups. I Ann. of Math. (2) 1979 1 60

[26] Vogan, David A., Jr. The unitary dual of 𝐺𝐿(𝑛) over an Archimedean field Invent. Math. 1986 449 505

[27] Vogan, David A., Jr. The unitary dual of 𝐺₂ Invent. Math. 1994 677 791

[28] Vogan, David A., Jr. Representations of real reductive Lie groups 1981

[29] Wallach, Nolan R. Real reductive groups. II 1992

Cité par Sources :