The moduli space of quadratic rational maps
Journal of the American Mathematical Society, Tome 20 (2007) no. 2, pp. 321-355

Voir la notice de l'article provenant de la source American Mathematical Society

Let $M_2$ be the space of quadratic rational maps $f:\textbf {P}^1\to \textbf {P}^1$, modulo the action by conjugation of the group of Möbius transformations. In this paper a compactification $X$ of $M_2$ is defined, as a modification of Milnor’s $\overline {M}_2\simeq \textbf {CP}^2$, by choosing representatives of a conjugacy class $[f]\in M_2$ such that the measure of maximal entropy of $f$ has conformal barycenter at the origin in $\textbf {R}^3$ and taking the closure in the space of probability measures. It is shown that $X$ is the smallest compactification of $M_2$ such that all iterate maps $[f]\mapsto [f^n]\in M_{2^n}$ extend continuously to $X \to \overline {M}_{2^n}$, where $\overline {M}_d$ is the natural compactification of $M_d$ coming from geometric invariant theory.
DOI : 10.1090/S0894-0347-06-00527-3

DeMarco, Laura 1

1 Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, Illinois 60637
@article{10_1090_S0894_0347_06_00527_3,
     author = {DeMarco, Laura},
     title = {The moduli space of quadratic rational maps},
     journal = {Journal of the American Mathematical Society},
     pages = {321--355},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2007},
     doi = {10.1090/S0894-0347-06-00527-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00527-3/}
}
TY  - JOUR
AU  - DeMarco, Laura
TI  - The moduli space of quadratic rational maps
JO  - Journal of the American Mathematical Society
PY  - 2007
SP  - 321
EP  - 355
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00527-3/
DO  - 10.1090/S0894-0347-06-00527-3
ID  - 10_1090_S0894_0347_06_00527_3
ER  - 
%0 Journal Article
%A DeMarco, Laura
%T The moduli space of quadratic rational maps
%J Journal of the American Mathematical Society
%D 2007
%P 321-355
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00527-3/
%R 10.1090/S0894-0347-06-00527-3
%F 10_1090_S0894_0347_06_00527_3
DeMarco, Laura. The moduli space of quadratic rational maps. Journal of the American Mathematical Society, Tome 20 (2007) no. 2, pp. 321-355. doi: 10.1090/S0894-0347-06-00527-3

[1] Demarco, Laura Iteration at the boundary of the space of rational maps Duke Math. J. 2005 169 197

[2] Douady, Adrien, Earle, Clifford J. Conformally natural extension of homeomorphisms of the circle Acta Math. 1986 23 48

[3] Dolgachev, Igor Lectures on invariant theory 2003

[4] Epstein, Adam Lawrence Bounded hyperbolic components of quadratic rational maps Ergodic Theory Dynam. Systems 2000 727 748

[5] Maã±Ã©, Ricardo On the uniqueness of the maximizing measure for rational maps Bol. Soc. Brasil. Mat. 1983 27 43

[6] Hubbard, John, Papadopol, Peter, Veselov, Vladimir A compactification of Hénon mappings in 𝐶² as dynamical systems Acta Math. 2000 203 270

[7] Ljubich, M. Ju. Entropy properties of rational endomorphisms of the Riemann sphere Ergodic Theory Dynam. Systems 1983 351 385

[8] Maã±Ã©, Ricardo On the uniqueness of the maximizing measure for rational maps Bol. Soc. Brasil. Mat. 1983 27 43

[9] Maã±Ã©, Ricardo The Hausdorff dimension of invariant probabilities of rational maps 1988 86 117

[10] Milnor, John Geometry and dynamics of quadratic rational maps Experiment. Math. 1993 37 83

[11] Mumford, D., Fogarty, J., Kirwan, F. Geometric invariant theory 1994

[12] Silverman, Joseph H. The space of rational maps on 𝐏¹ Duke Math. J. 1998 41 77

Cité par Sources :