Weil-Petersson volumes and intersection theory on the moduli space of curves
Journal of the American Mathematical Society, Tome 20 (2007) no. 1, pp. 1-23

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper, we establish a relationship between the Weil- Petersson volume $V_{g,n}(b)$ of the moduli space $\mathcal {M}_{g,n}(b)$ of hyperbolic Riemann surfaces with geodesic boundary components of lengths $b_{1}$, …, $b_{n}$, and the intersection numbers of tautological classes on the moduli space $\overline {\mathcal {M}}_{g,n}$ of stable curves. As a result, by using the recursive formula for $V_{g,n}(b)$ obtained in the author’s Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces, preprint, 2003, we derive a new proof of the Virasoro constraints for a point. This result is equivalent to the Witten-Kontsevich formula.
DOI : 10.1090/S0894-0347-06-00526-1

Mirzakhani, Maryam 1

1 Department of Mathematics, Princeton University, Princeton, NJ 08544
@article{10_1090_S0894_0347_06_00526_1,
     author = {Mirzakhani, Maryam},
     title = {Weil-Petersson volumes and intersection theory on the moduli space of curves},
     journal = {Journal of the American Mathematical Society},
     pages = {1--23},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2007},
     doi = {10.1090/S0894-0347-06-00526-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00526-1/}
}
TY  - JOUR
AU  - Mirzakhani, Maryam
TI  - Weil-Petersson volumes and intersection theory on the moduli space of curves
JO  - Journal of the American Mathematical Society
PY  - 2007
SP  - 1
EP  - 23
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00526-1/
DO  - 10.1090/S0894-0347-06-00526-1
ID  - 10_1090_S0894_0347_06_00526_1
ER  - 
%0 Journal Article
%A Mirzakhani, Maryam
%T Weil-Petersson volumes and intersection theory on the moduli space of curves
%J Journal of the American Mathematical Society
%D 2007
%P 1-23
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00526-1/
%R 10.1090/S0894-0347-06-00526-1
%F 10_1090_S0894_0347_06_00526_1
Mirzakhani, Maryam. Weil-Petersson volumes and intersection theory on the moduli space of curves. Journal of the American Mathematical Society, Tome 20 (2007) no. 1, pp. 1-23. doi: 10.1090/S0894-0347-06-00526-1

[1] Arbarello, Enrico Sketches of KdV 2002 9 69

[2] Bers, Lipman Spaces of degenerating Riemann surfaces 1974 43 55

[3] Boggi, M., Pikaart, M. Galois covers of moduli of curves Compositio Math. 2000 171 191

[4] Buser, Peter Geometry and spectra of compact Riemann surfaces 1992

[5] Dijkgraaf, Robbert, Verlinde, Herman, Verlinde, Erik Loop equations and Virasoro constraints in nonperturbative two-dimensional quantum gravity Nuclear Phys. B 1991 435 456

[6] Goldman, William M. The symplectic nature of fundamental groups of surfaces Adv. in Math. 1984 200 225

[7] Goldman, William M. Ergodic theory on moduli spaces Ann. of Math. (2) 1997 475 507

[8] Guillemin, Victor Moment maps and combinatorial invariants of Hamiltonian 𝑇ⁿ-spaces 1994

[9] Harris, Joe, Morrison, Ian Moduli of curves 1998

[10] Imayoshi, Y., Taniguchi, M. An introduction to Teichmüller spaces 1992

[11] Itzykson, C., Zuber, J.-B. Combinatorics of the modular group. II. The Kontsevich integrals Internat. J. Modern Phys. A 1992 5661 5705

[12] Kaufmann, R., Manin, Yu., Zagier, D. Higher Weil-Petersson volumes of moduli spaces of stable 𝑛-pointed curves Comm. Math. Phys. 1996 763 787

[13] Kirwan, Frances Momentum maps and reduction in algebraic geometry Differential Geom. Appl. 1998 135 171

[14] Kontsevich, Maxim Intersection theory on the moduli space of curves and the matrix Airy function Comm. Math. Phys. 1992 1 23

[15] Looijenga, Eduard Intersection theory on Deligne-Mumford compactifications (after Witten and Kontsevich) Astérisque 1993

[16] Looijenga, Eduard Smooth Deligne-Mumford compactifications by means of Prym level structures J. Algebraic Geom. 1994 283 293

[17] Manin, Yuri I., Zograf, Peter Invertible cohomological field theories and Weil-Petersson volumes Ann. Inst. Fourier (Grenoble) 2000 519 535

[18] Masur, Howard Extension of the Weil-Petersson metric to the boundary of Teichmuller space Duke Math. J. 1976 623 635

[19] Mcduff, Dusa Introduction to symplectic topology 1999 5 33

[20] Mcshane, Greg Simple geodesics and a series constant over Teichmuller space Invent. Math. 1998 607 632

[21] Milnor, John W., Stasheff, James D. Characteristic classes 1974

[22] Nakanishi, Toshihiro, Nã¤Ã¤Tã¤Nen, Marjatta Areas of two-dimensional moduli spaces Proc. Amer. Math. Soc. 2001 3241 3252

[23] Okounkov, Andrei Random trees and moduli of curves 2003 89 126

[24] Penner, R. C. Weil-Petersson volumes J. Differential Geom. 1992 559 608

[25] Weitsman, Jonathan Geometry of the intersection ring of the moduli space of flat connections and the conjectures of Newstead and Witten Topology 1998 115 132

[26] Witten, Edward Two-dimensional gravity and intersection theory on moduli space 1991 243 310

[27] Witten, Edward Two-dimensional gauge theories revisited J. Geom. Phys. 1992 303 368

[28] Wolpert, Scott An elementary formula for the Fenchel-Nielsen twist Comment. Math. Helv. 1981 132 135

[29] Wolpert, Scott On the homology of the moduli space of stable curves Ann. of Math. (2) 1983 491 523

[30] Wolpert, Scott A. On obtaining a positive line bundle from the Weil-Petersson class Amer. J. Math. 1985

[31] Wolpert, Scott On the Weil-Petersson geometry of the moduli space of curves Amer. J. Math. 1985 969 997

[32] Zograf, Peter The Weil-Petersson volume of the moduli space of punctured spheres 1993 367 372

Cité par Sources :