Superrigidity for irreducible lattices and geometric splitting
Journal of the American Mathematical Society, Tome 19 (2006) no. 4, pp. 781-814

Voir la notice de l'article provenant de la source American Mathematical Society

We prove general superrigidity results for actions of irreducible lattices on CAT$(0)$ spaces, first in terms of the ideal boundary, and then for the intrinsic geometry (also for infinite-dimensional spaces). In particular, one obtains a new and self-contained proof of Margulis’ superrigidity theorem for uniform irreducible lattices in non-simple groups. The proofs rely on simple geometric arguments, including a splitting theorem which can be viewed as an infinite-dimensional (and singular) generalization of the Lawson-Yau/Gromoll-Wolf theorem. Appendix A gives a very elementary proof of commensurator superrigidity; Appendix B proves that all our results also hold for certain non-uniform lattices.
DOI : 10.1090/S0894-0347-06-00525-X

Monod, Nicolas 1, 2

1 Department of Mathematics, The University of Chicago, 5734 University Avenue, Chicago, Illinois 60637
2 Université de Genève, 2-4, rue du Lièvre, CP 64, CH-1211 Genève 4, Switzerland
@article{10_1090_S0894_0347_06_00525_X,
     author = {Monod, Nicolas},
     title = {Superrigidity for irreducible lattices and geometric splitting},
     journal = {Journal of the American Mathematical Society},
     pages = {781--814},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2006},
     doi = {10.1090/S0894-0347-06-00525-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00525-X/}
}
TY  - JOUR
AU  - Monod, Nicolas
TI  - Superrigidity for irreducible lattices and geometric splitting
JO  - Journal of the American Mathematical Society
PY  - 2006
SP  - 781
EP  - 814
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00525-X/
DO  - 10.1090/S0894-0347-06-00525-X
ID  - 10_1090_S0894_0347_06_00525_X
ER  - 
%0 Journal Article
%A Monod, Nicolas
%T Superrigidity for irreducible lattices and geometric splitting
%J Journal of the American Mathematical Society
%D 2006
%P 781-814
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00525-X/
%R 10.1090/S0894-0347-06-00525-X
%F 10_1090_S0894_0347_06_00525_X
Monod, Nicolas. Superrigidity for irreducible lattices and geometric splitting. Journal of the American Mathematical Society, Tome 19 (2006) no. 4, pp. 781-814. doi: 10.1090/S0894-0347-06-00525-X

[1] A’Campo, Norbert, Burger, Marc Réseaux arithmétiques et commensurateur d’après G. A. Margulis Invent. Math. 1994 1 25

[2] Anderson, Michael T. The Dirichlet problem at infinity for manifolds of negative curvature J. Differential Geom. 1983

[3] Ballmann, Werner Lectures on spaces of nonpositive curvature 1995

[4] Bekka, M. B. On uniqueness of invariant means Proc. Amer. Math. Soc. 1998 507 514

[5] Bekka, Mohammed E. B., Valette, Alain Kazhdan’s property (𝑇) and amenable representations Math. Z. 1993 293 299

[6] Bergelson, Vitaly, Rosenblatt, Joseph Mixing actions of groups Illinois J. Math. 1988 65 80

[7] Blanc, Philippe Sur la cohomologie continue des groupes localement compacts Ann. Sci. École Norm. Sup. (4) 1979 137 168

[8] Bourbaki, Nicolas Éléments de mathématique. Fasc. II. Livre III: Topologie générale. Chapitre 1: Structures topologiques. Chapitre 2: Structures uniformes 1965

[9] Bourbaki, N. Éléments de mathématique. Première partie. (Fascicule III.) Livre III 1960

[10] Bourbaki, N. Éléments de mathématique. Fascicule XXIX. Livre VI: Intégration. Chapitre 7: Mesure de Haar. Chapitre 8: Convolution et représentations 1963

[11] Bridson, Martin R., Haefliger, Andrã© Metric spaces of non-positive curvature 1999

[12] Burger, Marc Rigidity properties of group actions on 𝐶𝐴𝑇(0)-spaces 1995 761 769

[13] Burger, Marc, Iozzi, Alessandra, Monod, Nicolas Equivariant embeddings of trees into hyperbolic spaces Int. Math. Res. Not. 2005 1331 1369

[14] Dymara, Jan, Januszkiewicz, Tadeusz Cohomology of buildings and their automorphism groups Invent. Math. 2002 579 627

[15] Eberlein, Patrick Isometry groups of simply connected manifolds of nonpositive curvature. II Acta Math. 1982 41 69

[16] Sur les groupes hyperboliques d’après Mikhael Gromov 1990

[17] Gromoll, Detlef, Wolf, Joseph A. Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature Bull. Amer. Math. Soc. 1971 545 552

[18] Gromov, M., Pansu, P. Rigidity of lattices: an introduction 1991 39 137

[19] Guichardet, Alain Sur la cohomologie des groupes topologiques. II Bull. Sci. Math. (2) 1972 305 332

[20] Jost, Jã¼Rgen Nonpositive curvature: geometric and analytic aspects 1997

[21] Jost, Jã¼Rgen, Yau, Shing-Tung Applications of quasilinear PDE to algebraic geometry and arithmetic lattices 1993 169 193

[22] Jost, Jã¼Rgen, Yau, Shing-Tung Harmonic maps and superrigidity 1997 213 246

[23] Jost, Jã¼Rgen, Yau, Shing-Tung Harmonic maps and rigidity theorems for spaces of nonpositive curvature Comm. Anal. Geom. 1999 681 694

[24] Kakutani, Shizuo, Kodaira, Kunihiko Über das Haarsche Mass in der lokal bikompakten Gruppe Proc. Imp. Acad. Tokyo 1944 444 450

[25] Korevaar, Nicholas J., Schoen, Richard M. Sobolev spaces and harmonic maps for metric space targets Comm. Anal. Geom. 1993 561 659

[26] Lawson, H. Blaine, Jr., Yau, Shing Tung Compact manifolds of nonpositive curvature J. Differential Geometry 1972 211 228

[27] Margulis, G. A. Discrete subgroups of semisimple Lie groups 1991

[28] Mok, Ngaiming, Siu, Yum Tong, Yeung, Sai-Kee Geometric superrigidity Invent. Math. 1993 57 83

[29] Monod, Nicolas Arithmeticity vs. nonlinearity for irreducible lattices Geom. Dedicata 2005 225 237

[30] Monod, Nicolas, Shalom, Yehuda Cocycle superrigidity and bounded cohomology for negatively curved spaces J. Differential Geom. 2004 395 455

[31] Monod, Nicolas, Shalom, Yehuda Negative curvature from a cohomological viewpoint and cocycle superrigidity C. R. Math. Acad. Sci. Paris 2003 635 638

[32] Rã©My, Bertrand Groupes de Kac-Moody déployés et presque déployés Astérisque 2002

[33] Rã©My, Bertrand Integrability of induction cocycles for Kac-Moody groups Math. Ann. 2005 29 43

[34] Reå¡Etnjak, Ju. G. Non-expansive maps in a space of curvature no greater than 𝐾 Sibirsk. Mat. Ž. 1968 918 927

[35] Schroeder, Viktor A splitting theorem for spaces of nonpositive curvature Invent. Math. 1985 323 327

[36] Shalom, Yehuda Rigidity of commensurators and irreducible lattices Invent. Math. 2000 1 54

[37] Tits, J. Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque J. Reine Angew. Math. 1971 196 220

[38] Venkataramana, T. N. On superrigidity and arithmeticity of lattices in semisimple groups over local fields of arbitrary characteristic Invent. Math. 1988 255 306

[39] Zimmer, Robert J. Ergodic theory and semisimple groups 1984

Cité par Sources :