Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension
Journal of the American Mathematical Society, Tome 19 (2006) no. 4, pp. 815-920

Voir la notice de l'article provenant de la source American Mathematical Society

Standing wave solutions of the one-dimensional nonlinear Schrödinger equation \[ i\partial _t \psi + \partial _{x}^2 \psi = -|\psi |^{2\sigma } \psi \] with $\sigma >2$ are well known to be unstable. In this paper we show that asymptotic stability can be achieved provided the perturbations of these standing waves are small and chosen to belong to a codimension one Lipschitz surface. Thus, we construct codimension one asymptotically stable manifolds for all supercritical NLS in one dimension. The considerably more difficult $L^2$-critical case, for which one wishes to understand the conditional stability of the pseudo-conformal blow-up solutions, is studied in the authors’ companion paper Non-generic blow-up solutions for the critical focusing NLS in 1-d, preprint, 2005.
DOI : 10.1090/S0894-0347-06-00524-8

Krieger, J. 1 ; Schlag, W. 2

1 Department of Mathematics, Harvard University, Science Center, 1 Oxford Street, Cambridge, Massachusetts 02138
2 Department of Mathematics, The University of Chicago, 5734 South University Avenue, Chicago, Illinois 60637
@article{10_1090_S0894_0347_06_00524_8,
     author = {Krieger, J. and Schlag, W.},
     title = {Stable manifolds for all monic supercritical focusing nonlinear {Schr\~A{\textparagraph}dinger} equations in one dimension},
     journal = {Journal of the American Mathematical Society},
     pages = {815--920},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2006},
     doi = {10.1090/S0894-0347-06-00524-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00524-8/}
}
TY  - JOUR
AU  - Krieger, J.
AU  - Schlag, W.
TI  - Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension
JO  - Journal of the American Mathematical Society
PY  - 2006
SP  - 815
EP  - 920
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00524-8/
DO  - 10.1090/S0894-0347-06-00524-8
ID  - 10_1090_S0894_0347_06_00524_8
ER  - 
%0 Journal Article
%A Krieger, J.
%A Schlag, W.
%T Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension
%J Journal of the American Mathematical Society
%D 2006
%P 815-920
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00524-8/
%R 10.1090/S0894-0347-06-00524-8
%F 10_1090_S0894_0347_06_00524_8
Krieger, J.; Schlag, W. Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension. Journal of the American Mathematical Society, Tome 19 (2006) no. 4, pp. 815-920. doi: 10.1090/S0894-0347-06-00524-8

[1] Artbazar, Galtbayar, Yajima, Kenji The 𝐿^{𝑝}-continuity of wave operators for one dimensional Schrödinger operators J. Math. Sci. Univ. Tokyo 2000 221 240

[2] Bates, Peter W., Jones, Christopher K. R. T. Invariant manifolds for semilinear partial differential equations 1989 1 38

[3] Berestycki, Henri, Cazenave, Thierry Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires C. R. Acad. Sci. Paris Sér. I Math. 1981 489 492

[4] Bourgain, Jean, Wang, W. Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1997

[5] Buslaev, V. S., Perel′Man, G. S. Scattering for the nonlinear Schrödinger equation: states that are close to a soliton Algebra i Analiz 1992 63 102

[6] Buslaev, V. S., Perel′Man, G. S. On the stability of solitary waves for nonlinear Schrödinger equations 1995 75 98

[7] Cazenave, T., Lions, P.-L. Orbital stability of standing waves for some nonlinear Schrödinger equations Comm. Math. Phys. 1982 549 561

[8] Christ, Michael, Kiselev, Alexander Maximal functions associated to filtrations J. Funct. Anal. 2001 409 425

[9] Comech, Andrew, Pelinovsky, Dmitry Purely nonlinear instability of standing waves with minimal energy Comm. Pure Appl. Math. 2003 1565 1607

[10] Cuccagna, Scipio Stabilization of solutions to nonlinear Schrödinger equations Comm. Pure Appl. Math. 2001 1110 1145

[11] Cuccagna, Scipio, Pelinovsky, Dmitry Bifurcations from the endpoints of the essential spectrum in the linearized nonlinear Schrödinger problem J. Math. Phys. 2005

[12] Cuccagna, Scipio, Pelinovsky, Dmitry, Vougalter, Vitali Spectra of positive and negative energies in the linearized NLS problem Comm. Pure Appl. Math. 2005 1 29

[13] Flã¼Gge, Siegfried Practical quantum mechanics 1974

[14] Frã¶Hlich, J., Gustafson, S., Jonsson, B. L. G., Sigal, I. M. Solitary wave dynamics in an external potential Comm. Math. Phys. 2004 613 642

[15] Frã¶Hlich, Jã¼Rg, Tsai, Tai-Peng, Yau, Horng-Tzer On the point-particle (Newtonian) limit of the non-linear Hartree equation Comm. Math. Phys. 2002 223 274

[16] Gesztesy, F., Jones, C. K. R. T., Latushkin, Y., Stanislavova, M. A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations Indiana Univ. Math. J. 2000 221 243

[17] Grillakis, Manoussos Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system Comm. Pure Appl. Math. 1990 299 333

[18] Grillakis, Manoussos, Shatah, Jalal, Strauss, Walter Stability theory of solitary waves in the presence of symmetry. I J. Funct. Anal. 1987 160 197

[19] Grillakis, Manoussos, Shatah, Jalal, Strauss, Walter Stability theory of solitary waves in the presence of symmetry. II J. Funct. Anal. 1990 308 348

[20] Goldberg, M., Schlag, W. Dispersive estimates for Schrödinger operators in dimensions one and three Comm. Math. Phys. 2004 157 178

[21] Hartman, Philip Ordinary differential equations 2002

[22] Hislop, P. D., Sigal, I. M. Introduction to spectral theory 1996

[23] Kato, Tosio Wave operators and similarity for some non-selfadjoint operators Math. Ann. 1965/66 258 279

[24] Li, Charles, Wiggins, Stephen Invariant manifolds and fibrations for perturbed nonlinear Schrödinger equations 1997

[25] Merle, F., Raphael, P. Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation Geom. Funct. Anal. 2003 591 642

[26] Merle, Frank, Raphael, Pierre On universality of blow-up profile for 𝐿² critical nonlinear Schrödinger equation Invent. Math. 2004 565 672

[27] Merle, Frank, Raphael, Pierre On a sharp lower bound on the blow-up rate for the 𝐿² critical nonlinear Schrödinger equation J. Amer. Math. Soc. 2006 37 90

[28] Murata, Minoru Asymptotic expansions in time for solutions of Schrödinger-type equations J. Funct. Anal. 1982 10 56

[29] Perelman, Galina Some results on the scattering of weakly interacting solitons for nonlinear Schrödinger equations 1997 78 137

[30] Perelman, Galina On the formation of singularities in solutions of the critical nonlinear Schrödinger equation Ann. Henri Poincaré 2001 605 673

[31] Perelman, Galina Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations Comm. Partial Differential Equations 2004 1051 1095

[32] Pillet, Claude-Alain, Wayne, C. Eugene Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations J. Differential Equations 1997 310 326

[33] Raphael, Pierre Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation Math. Ann. 2005 577 609

[34] Reed, Michael, Simon, Barry Methods of modern mathematical physics. I. Functional analysis 1972

[35] Rodnianski, Igor, Schlag, Wilhelm Time decay for solutions of Schrödinger equations with rough and time-dependent potentials Invent. Math. 2004 451 513

[36] Rodnianski, Igor, Schlag, Wilhelm, Soffer, Avraham Dispersive analysis of charge transfer models Comm. Pure Appl. Math. 2005 149 216

[37] Shatah, Jalal Stable standing waves of nonlinear Klein-Gordon equations Comm. Math. Phys. 1983 313 327

[38] Shatah, Jalal, Strauss, Walter Instability of nonlinear bound states Comm. Math. Phys. 1985 173 190

[39] Smith, Hart F., Sogge, Christopher D. Global Strichartz estimates for nontrapping perturbations of the Laplacian Comm. Partial Differential Equations 2000 2171 2183

[40] Soffer, A., Weinstein, M. I. Multichannel nonlinear scattering for nonintegrable equations Comm. Math. Phys. 1990 119 146

[41] Soffer, A., Weinstein, M. I. Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data J. Differential Equations 1992 376 390

[42] Strauss, Walter A. Nonlinear wave equations 1989

[43] Sulem, Catherine, Sulem, Pierre-Louis The nonlinear Schrödinger equation 1999

[44] Tsai, Tai-Peng, Yau, Horng-Tzer Stable directions for excited states of nonlinear Schrödinger equations Comm. Partial Differential Equations 2002 2363 2402

[45] Weder, Ricardo The 𝑊_{𝑘,𝑝}-continuity of the Schrödinger wave operators on the line Comm. Math. Phys. 1999 507 520

[46] Weinstein, Michael I. Modulational stability of ground states of nonlinear Schrödinger equations SIAM J. Math. Anal. 1985 472 491

[47] Weinstein, Michael I. Lyapunov stability of ground states of nonlinear dispersive evolution equations Comm. Pure Appl. Math. 1986 51 67

Cité par Sources :