The units of a ring spectrum and a logarithmic cohomology operation
Journal of the American Mathematical Society, Tome 19 (2006) no. 4, pp. 969-1014

Voir la notice de l'article provenant de la source American Mathematical Society

We construct a “logarithmic” cohomology operation on Morava $E$-theory, which is a homomorphism defined on the multiplicative group of invertible elements in the ring $E^0(K)$ of a space $K$. We obtain a formula for this map in terms of the action of Hecke operators on Morava $E$-theory. Our formula is closely related to that for an Euler factor of the Hecke $L$-function of an automorphic form.
DOI : 10.1090/S0894-0347-06-00521-2

Rezk, Charles 1

1 Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820
@article{10_1090_S0894_0347_06_00521_2,
     author = {Rezk, Charles},
     title = {The units of a ring spectrum and a logarithmic cohomology operation},
     journal = {Journal of the American Mathematical Society},
     pages = {969--1014},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2006},
     doi = {10.1090/S0894-0347-06-00521-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00521-2/}
}
TY  - JOUR
AU  - Rezk, Charles
TI  - The units of a ring spectrum and a logarithmic cohomology operation
JO  - Journal of the American Mathematical Society
PY  - 2006
SP  - 969
EP  - 1014
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00521-2/
DO  - 10.1090/S0894-0347-06-00521-2
ID  - 10_1090_S0894_0347_06_00521_2
ER  - 
%0 Journal Article
%A Rezk, Charles
%T The units of a ring spectrum and a logarithmic cohomology operation
%J Journal of the American Mathematical Society
%D 2006
%P 969-1014
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00521-2/
%R 10.1090/S0894-0347-06-00521-2
%F 10_1090_S0894_0347_06_00521_2
Rezk, Charles. The units of a ring spectrum and a logarithmic cohomology operation. Journal of the American Mathematical Society, Tome 19 (2006) no. 4, pp. 969-1014. doi: 10.1090/S0894-0347-06-00521-2

[1] Ando, Matthew, Hopkins, Michael J., Strickland, Neil P. The sigma orientation is an 𝐻_{∞} map Amer. J. Math. 2004 247 334

[2] Atiyah, M. F., Macdonald, I. G. Introduction to commutative algebra 1969

[3] Ando, Matthew Isogenies of formal group laws and power operations in the cohomology theories 𝐸_{𝑛} Duke Math. J. 1995 423 485

[4] Atiyah, M. F., Segal, G. B. Exponential isomorphisms for 𝜆-rings Quart. J. Math. Oxford Ser. (2) 1971 371 378

[5] Bousfield, A. K., Friedlander, E. M. Homotopy theory of Γ-spaces, spectra, and bisimplicial sets 1978 80 130

[6] Bendersky, Martin, Hunton, John R. On the coalgebraic ring and Bousfield-Kan spectral sequence for a Landweber exact spectrum Proc. Edinb. Math. Soc. (2) 2004 513 532

[7] Bruner, R. R., May, J. P., Mcclure, J. E., Steinberger, M. 𝐻_{∞} ring spectra and their applications 1986

[8] Bousfield, A. K. The localization of spectra with respect to homology Topology 1979 257 281

[9] Bousfield, A. K. Uniqueness of infinite deloopings for 𝐾-theoretic spaces Pacific J. Math. 1987 1 31

[10] Bousfield, A. K. On the telescopic homotopy theory of spaces Trans. Amer. Math. Soc. 2001 2391 2426

[11] Dold, Albrecht Decomposition theorems for 𝑆(𝑛)-complexes Ann. of Math. (2) 1962 8 16

[12] Elmendorf, A. D., Kriz, I., Mandell, M. A., May, J. P. Rings, modules, and algebras in stable homotopy theory 1997

[13] Goerss, Paul G., Jardine, John F. Simplicial homotopy theory 1999

[14] Gluck, David Idempotent formula for the Burnside algebra with applications to the 𝑝-subgroup simplicial complex Illinois J. Math. 1981 63 67

[15] Hopkins, Michael J., Kuhn, Nicholas J., Ravenel, Douglas C. Generalized group characters and complex oriented cohomology theories J. Amer. Math. Soc. 2000 553 594

[16] Hodgkin, Luke The 𝐾-theory of some wellknown spaces. I. 𝑄𝑆⁰ Topology 1972 371 375

[17] Hopkins, M. J. Algebraic topology and modular forms 2002 291 317

[18] Hovey, Mark, Strickland, Neil P. Morava 𝐾-theories and localisation Mem. Amer. Math. Soc. 1999

[19] Hovey, Mark, Shipley, Brooke, Smith, Jeff Symmetric spectra J. Amer. Math. Soc. 2000 149 208

[20] Kashiwabara, Takuji Hopf rings and unstable operations J. Pure Appl. Algebra 1994 183 193

[21] Kuhn, Nicholas J. Morava 𝐾-theories and infinite loop spaces 1989 243 257

[22] Lewis, L. G., Jr., May, J. P., Steinberger, M., Mcclure, J. E. Equivariant stable homotopy theory 1986

[23] Lubin, Jonathan, Tate, John Formal moduli for one-parameter formal Lie groups Bull. Soc. Math. France 1966 49 59

[24] Boardman, J. M., Vogt, R. M. Homotopy invariant algebraic structures on topological spaces 1973

[25] May, J. Peter 𝐸_{∞} ring spaces and 𝐸_{∞} ring spectra 1977 268

[26] May, J. P. Multiplicative infinite loop space theory J. Pure Appl. Algebra 1982 1 69

[27] Mandell, M. A., May, J. P. Equivariant orthogonal spectra and 𝑆-modules Mem. Amer. Math. Soc. 2002

[28] Richter, Birgit, Robinson, Alan Gamma homology of group algebras and of polynomial algebras 2004 453 461

[29] Shimura, Goro Introduction to the arithmetic theory of automorphic functions 1971

[30] Strickland, Neil P., Turner, Paul R. Rational Morava 𝐸-theory and 𝐷𝑆⁰ Topology 1997 137 151

[31] Strickland, Neil P. Finite subgroups of formal groups J. Pure Appl. Algebra 1997 161 208

[32] Strickland, N. P. Morava 𝐸-theory of symmetric groups Topology 1998 757 779

[33] Woolfson, Richard Hyper-Γ-spaces and hyperspectra Quart. J. Math. Oxford Ser. (2) 1979 229 255

Cité par Sources :