Heegaard surfaces and measured laminations, II: Non-Haken 3–manifolds
Journal of the American Mathematical Society, Tome 19 (2006) no. 3, pp. 625-657

Voir la notice de l'article provenant de la source American Mathematical Society

A famous example of Casson and Gordon shows that a Haken 3–manifold can have an infinite family of irreducible Heegaard splittings with different genera. In this paper, we prove that a closed non-Haken 3–manifold has only finitely many irreducible Heegaard splittings, up to isotopy. This is much stronger than the generalized Waldhausen conjecture. Another immediate corollary is that for any irreducible non-Haken 3–manifold $M$, there is a number $N$ such that any two Heegaard splittings of $M$ are equivalent after at most $N$ stabilizations.
DOI : 10.1090/S0894-0347-06-00520-0

Li, Tao 1

1 Department of Mathematics, Boston College, Chestnut Hill, Massachusetts, 02167-3806
@article{10_1090_S0894_0347_06_00520_0,
     author = {Li, Tao},
     title = {Heegaard surfaces and measured laminations, {II:} {Non-Haken} 3\^a€“manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {625--657},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2006},
     doi = {10.1090/S0894-0347-06-00520-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00520-0/}
}
TY  - JOUR
AU  - Li, Tao
TI  - Heegaard surfaces and measured laminations, II: Non-Haken 3–manifolds
JO  - Journal of the American Mathematical Society
PY  - 2006
SP  - 625
EP  - 657
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00520-0/
DO  - 10.1090/S0894-0347-06-00520-0
ID  - 10_1090_S0894_0347_06_00520_0
ER  - 
%0 Journal Article
%A Li, Tao
%T Heegaard surfaces and measured laminations, II: Non-Haken 3–manifolds
%J Journal of the American Mathematical Society
%D 2006
%P 625-657
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00520-0/
%R 10.1090/S0894-0347-06-00520-0
%F 10_1090_S0894_0347_06_00520_0
Li, Tao. Heegaard surfaces and measured laminations, II: Non-Haken 3–manifolds. Journal of the American Mathematical Society, Tome 19 (2006) no. 3, pp. 625-657. doi: 10.1090/S0894-0347-06-00520-0

[1] Agol, Ian, Li, Tao An algorithm to detect laminar 3-manifolds Geom. Topol. 2003 287 309

[2] Boileau, M., Collins, D. J., Zieschang, H. Genus 2 Heegaard decompositions of small Seifert manifolds Ann. Inst. Fourier (Grenoble) 1991 1005 1024

[3] Bonahon, Francis, Otal, Jean-Pierre Scindements de Heegaard des espaces lenticulaires Ann. Sci. École Norm. Sup. (4) 1983

[4] Casson, A. J., Gordon, C. Mca. Reducing Heegaard splittings Topology Appl. 1987 275 283

[5] Floyd, W., Oertel, U. Incompressible surfaces via branched surfaces Topology 1984 117 125

[6] Gabai, David Foliations and 3-manifolds 1991 609 619

[7] Gabai, David, Oertel, Ulrich Essential laminations in 3-manifolds Ann. of Math. (2) 1989 41 73

[8] Haken, Wolfgang Some results on surfaces in 3-manifolds 1968 39 98

[9] Hatcher, A. E. Measured lamination spaces for surfaces, from the topological viewpoint Topology Appl. 1988 63 88

[10] Johannson, Klaus Heegaard surfaces in Haken 3-manifolds Bull. Amer. Math. Soc. (N.S.) 1990 91 98

[11] Johannson, Klaus Topology and combinatorics of 3-manifolds 1995

[12] Kobayashi, Tsuyoshi A construction of 3-manifolds whose homeomorphism classes of Heegaard splittings have polynomial growth Osaka J. Math. 1992 653 674

[13] Lackenby, Marc The asymptotic behaviour of Heegaard genus Math. Res. Lett. 2004 139 149

[14] Li, Tao Laminar branched surfaces in 3-manifolds Geom. Topol. 2002 153 194

[15] Li, Tao Boundary curves of surfaces with the 4-plane property Geom. Topol. 2002 609 647

[16] Masters, J., Menasco, W., Zhang, X. Heegaard splittings and virtually Haken Dehn filling New York J. Math. 2004 133 150

[17] Menasco, W. Closed incompressible surfaces in alternating knot and link complements Topology 1984 37 44

[18] Morgan, John W., Shalen, Peter B. Degenerations of hyperbolic structures. II. Measured laminations in 3-manifolds Ann. of Math. (2) 1988 403 456

[19] Moriah, Yoav Heegaard splittings of Seifert fibered spaces Invent. Math. 1988 465 481

[20] Moriah, Yoav, Schultens, Jennifer Irreducible Heegaard splittings of Seifert fibered spaces are either vertical or horizontal Topology 1998 1089 1112

[21] Oertel, Ulrich Measured laminations in 3-manifolds Trans. Amer. Math. Soc. 1988 531 573

[22] Rubinstein, J. H. Polyhedral minimal surfaces, Heegaard splittings and decision problems for 3-dimensional manifolds 1997 1 20

[23] Rubinstein, Hyam, Scharlemann, Martin Comparing Heegaard splittings of non-Haken 3-manifolds Topology 1996 1005 1026

[24] Scharlemann, Martin Local detection of strongly irreducible Heegaard splittings Topology Appl. 1998 135 147

[25] Sedgwick, E. An infinite collection of Heegaard splittings that are equivalent after one stabilization Math. Ann. 1997 65 72

[26] Stocking, Michelle Almost normal surfaces in 3-manifolds Trans. Amer. Math. Soc. 2000 171 207

[27] Waldhausen, Friedhelm Heegaard-Zerlegungen der 3-Sphäre Topology 1968 195 203

[28] Waldhausen, Friedhelm Some problems on 3-manifolds 1978 313 322

[29] Wu, Ying-Qing Dehn surgery on arborescent knots J. Differential Geom. 1996 171 197

Cité par Sources :