Fuglede–Kadison determinants and entropy for actions of discrete amenable groups
Journal of the American Mathematical Society, Tome 19 (2006) no. 3, pp. 737-758

Voir la notice de l'article provenant de la source American Mathematical Society

In 1990, Lind, Schmidt, and Ward gave a formula for the entropy of certain $\mathbb {Z}^n$-dynamical systems attached to Laurent polynomials $P$, in terms of the (logarithmic) Mahler measure of $P$. We extend the expansive case of their result to the noncommutative setting where $\mathbb {Z}^n$ gets replaced by suitable discrete amenable groups. Generalizing the Mahler measure, Fuglede–Kadison determinants from the theory of group von Neumann algebras appear in the entropy formula.
DOI : 10.1090/S0894-0347-06-00519-4

Deninger, Christopher 1

1 Mathematisches Institut, Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany
@article{10_1090_S0894_0347_06_00519_4,
     author = {Deninger, Christopher},
     title = {Fuglede\^a€“Kadison determinants and entropy for actions of discrete amenable groups},
     journal = {Journal of the American Mathematical Society},
     pages = {737--758},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2006},
     doi = {10.1090/S0894-0347-06-00519-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00519-4/}
}
TY  - JOUR
AU  - Deninger, Christopher
TI  - Fuglede–Kadison determinants and entropy for actions of discrete amenable groups
JO  - Journal of the American Mathematical Society
PY  - 2006
SP  - 737
EP  - 758
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00519-4/
DO  - 10.1090/S0894-0347-06-00519-4
ID  - 10_1090_S0894_0347_06_00519_4
ER  - 
%0 Journal Article
%A Deninger, Christopher
%T Fuglede–Kadison determinants and entropy for actions of discrete amenable groups
%J Journal of the American Mathematical Society
%D 2006
%P 737-758
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00519-4/
%R 10.1090/S0894-0347-06-00519-4
%F 10_1090_S0894_0347_06_00519_4
Deninger, Christopher. Fuglede–Kadison determinants and entropy for actions of discrete amenable groups. Journal of the American Mathematical Society, Tome 19 (2006) no. 3, pp. 737-758. doi: 10.1090/S0894-0347-06-00519-4

[1] Boyd, David W. Mahler’s measure and special values of 𝐿-functions Experiment. Math. 1998 37 82

[2] Boyd, David W. Mahler’s measure and invariants of hyperbolic manifolds 2002 127 143

[3] Deninger, Christopher Deligne periods of mixed motives, 𝐾-theory and the entropy of certain 𝑍ⁿ-actions J. Amer. Math. Soc. 1997 259 281

[4] Dixmier, Jacques 𝐶*-algebras 1977

[5] Elek, Gã¡Bor Amenable groups, topological entropy and Betti numbers Israel J. Math. 2002 315 335

[6] Fuglede, Bent, Kadison, Richard V. Determinant theory in finite factors Ann. of Math. (2) 1952 520 530

[7] Grigorchuk, Rostislav I. On growth in group theory 1991 325 338

[8] Katznelson, Yitzhak An introduction to harmonic analysis 2004

[9] Leptin, Horst On one-sided harmonic analysis in noncommutative locally compact groups J. Reine Angew. Math. 1979 122 153

[10] Leptin, Horst, Poguntke, Detlev Symmetry and nonsymmetry for locally compact groups J. Functional Analysis 1979 119 134

[11] Lind, Douglas Lehmer’s problem for compact abelian groups Proc. Amer. Math. Soc. 2005 1411 1416

[12] Lind, Douglas, Schmidt, Klaus, Ward, Tom Mahler measure and entropy for commuting automorphisms of compact groups Invent. Math. 1990 593 629

[13] Lindenstrauss, Elon, Weiss, Benjamin Mean topological dimension Israel J. Math. 2000 1 24

[14] Losert, V. A characterization of groups with the one-sided Wiener property J. Reine Angew. Math. 1982 47 57

[15] Lã¼Ck, W. Approximating 𝐿²-invariants by their finite-dimensional analogues Geom. Funct. Anal. 1994 455 481

[16] Lã¼Ck, Wolfgang 𝐿²-invariants: theory and applications to geometry and 𝐾-theory 2002

[17] Moulin Ollagnier, Jean Ergodic theory and statistical mechanics 1985

[18] Ornstein, Donald S., Weiss, Benjamin Entropy and isomorphism theorems for actions of amenable groups J. Analyse Math. 1987 1 141

[19] Paterson, Alan L. T. Amenability 1988

[20] Schick, Thomas 𝐿²-determinant class and approximation of 𝐿²-Betti numbers Trans. Amer. Math. Soc. 2001 3247 3265

[21] Schmidt, Klaus Dynamical systems of algebraic origin 1995

[22] Solomyak, Rita On coincidence of entropies for two classes of dynamical systems Ergodic Theory Dynam. Systems 1998 731 738

[23] Wiener, Norbert Tauberian theorems Ann. of Math. (2) 1932 1 100

[24] Yosida, Kã´Saku Functional analysis 1974

Cité par Sources :