Quasisymmetric groups
Journal of the American Mathematical Society, Tome 19 (2006) no. 3, pp. 673-715

Voir la notice de l'article provenant de la source American Mathematical Society

One of the first problems in the theory of quasisymmetric and convergence groups was to investigate whether every quasisymmetric group that acts on the sphere $\textbf {S}^{n}$, $n>0$, is a quasisymmetric conjugate of a Möbius group that acts on $\textbf {S}^{n}$. This was shown to be true for $n=2$ by Sullivan and Tukia, and it was shown to be wrong for $n>2$ by Tukia. It also follows from the work of Martin and of Freedman and Skora. In this paper we settle the case of $n=1$ by showing that any $K$-quasisymmetric group is $K_1$-quasisymmetrically conjugated to a Möbius group. The constant $K_1$ is a function $K$.
DOI : 10.1090/S0894-0347-06-00518-2

Markovic, Vladimir 1

1 University of Warwick, Institute of Mathematics, Coventry CV4 7AL, United Kingdom
@article{10_1090_S0894_0347_06_00518_2,
     author = {Markovic, Vladimir},
     title = {Quasisymmetric groups},
     journal = {Journal of the American Mathematical Society},
     pages = {673--715},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2006},
     doi = {10.1090/S0894-0347-06-00518-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00518-2/}
}
TY  - JOUR
AU  - Markovic, Vladimir
TI  - Quasisymmetric groups
JO  - Journal of the American Mathematical Society
PY  - 2006
SP  - 673
EP  - 715
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00518-2/
DO  - 10.1090/S0894-0347-06-00518-2
ID  - 10_1090_S0894_0347_06_00518_2
ER  - 
%0 Journal Article
%A Markovic, Vladimir
%T Quasisymmetric groups
%J Journal of the American Mathematical Society
%D 2006
%P 673-715
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00518-2/
%R 10.1090/S0894-0347-06-00518-2
%F 10_1090_S0894_0347_06_00518_2
Markovic, Vladimir. Quasisymmetric groups. Journal of the American Mathematical Society, Tome 19 (2006) no. 3, pp. 673-715. doi: 10.1090/S0894-0347-06-00518-2

[1] Abikoff, William, Earle, Clifford J., Mitra, Sudeb Barycentric extensions of monotone maps of the circle 2004 1 20

[2] Bowditch, Brian H. A topological characterisation of hyperbolic groups J. Amer. Math. Soc. 1998 643 667

[3] Casson, Andrew, Jungreis, Douglas Convergence groups and Seifert fibered 3-manifolds Invent. Math. 1994 441 456

[4] Douady, Adrien, Earle, Clifford J. Conformally natural extension of homeomorphisms of the circle Acta Math. 1986 23 48

[5] Epstein, D. B. A., Marden, A., Markovic, V. Quasiconformal homeomorphisms and the convex hull boundary Ann. of Math. (2) 2004 305 336

[6] Freedman, Michael H., Skora, Richard Strange actions of groups on spheres J. Differential Geom. 1987 75 98

[7] Gabai, David Convergence groups are Fuchsian groups Bull. Amer. Math. Soc. (N.S.) 1991 395 402

[8] Gehring, F. W., Martin, G. J. Discrete quasiconformal groups. I Proc. London Math. Soc. (3) 1987 331 358

[9] Gehring, F. W., Martin, G. J. Discrete convergence groups 1987 158 167

[10] Gehring, F. W., Palka, B. P. Quasiconformally homogeneous domains J. Analyse Math. 1976 172 199

[11] He, Zheng-Xu, Schramm, Oded Fixed points, Koebe uniformization and circle packings Ann. of Math. (2) 1993 369 406

[12] Heinonen, Juha, Koskela, Pekka Definitions of quasiconformality Invent. Math. 1995 61 79

[13] Hinkkanen, A. Uniformly quasisymmetric groups Proc. London Math. Soc. (3) 1985 318 338

[14] Hinkkanen, A. Abelian and nondiscrete convergence groups on the circle Trans. Amer. Math. Soc. 1990 87 121

[15] Hinkkanen, A. The structure of certain quasisymmetric groups Mem. Amer. Math. Soc. 1990

[16] Katok, Svetlana Fuchsian groups 1992

[17] Martin, Gaven J. Discrete quasiconformal groups that are not the quasiconformal conjugates of Möbius groups Ann. Acad. Sci. Fenn. Ser. A I Math. 1986 179 202

[18] Martin, Gaven J., Tukia, Pekka Convergence and Möbius groups 1988 113 140

[19] Pommerenke, Ch. Boundary behaviour of conformal maps 1992

[20] Sullivan, Dennis On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions 1981 465 496

[21] Thurston, William P. Three-dimensional geometry and topology. Vol. 1 1997

[22] Tukia, Pekka On two-dimensional quasiconformal groups Ann. Acad. Sci. Fenn. Ser. A I Math. 1980 73 78

[23] Tukia, Pekka A quasiconformal group not isomorphic to a Möbius group Ann. Acad. Sci. Fenn. Ser. A I Math. 1981 149 160

[24] Tukia, Pekka Homeomorphic conjugates of Fuchsian groups J. Reine Angew. Math. 1988 1 54

Cité par Sources :