Integral points on elliptic curves and 3-torsion in class groups
Journal of the American Mathematical Society, Tome 19 (2006) no. 3, pp. 527-550

Voir la notice de l'article provenant de la source American Mathematical Society

We give new bounds for the number of integral points on elliptic curves. The method may be said to interpolate between approaches via diophantine techniques and methods based on quasi-orthogonality in the Mordell-Weil lattice. We apply our results to break previous bounds on the number of elliptic curves of given conductor and the size of the $3$-torsion part of the class group of a quadratic field. The same ideas can be used to count rational points on curves of higher genus.
DOI : 10.1090/S0894-0347-06-00515-7

Helfgott, H. 1, 2 ; Venkatesh, A. 3, 4

1 Department of Mathematics, Yale University, New Haven, Connecticut 06520
2 Département de mathématiques et de statistique, Université de Montréal, CP 6128 succ Centre-Ville, Montréal QC H3C 3J7, Canada
3 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139–4307
4 Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540
@article{10_1090_S0894_0347_06_00515_7,
     author = {Helfgott, H. and Venkatesh, A.},
     title = {Integral points on elliptic curves and 3-torsion in class groups},
     journal = {Journal of the American Mathematical Society},
     pages = {527--550},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2006},
     doi = {10.1090/S0894-0347-06-00515-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00515-7/}
}
TY  - JOUR
AU  - Helfgott, H.
AU  - Venkatesh, A.
TI  - Integral points on elliptic curves and 3-torsion in class groups
JO  - Journal of the American Mathematical Society
PY  - 2006
SP  - 527
EP  - 550
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00515-7/
DO  - 10.1090/S0894-0347-06-00515-7
ID  - 10_1090_S0894_0347_06_00515_7
ER  - 
%0 Journal Article
%A Helfgott, H.
%A Venkatesh, A.
%T Integral points on elliptic curves and 3-torsion in class groups
%J Journal of the American Mathematical Society
%D 2006
%P 527-550
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00515-7/
%R 10.1090/S0894-0347-06-00515-7
%F 10_1090_S0894_0347_06_00515_7
Helfgott, H.; Venkatesh, A. Integral points on elliptic curves and 3-torsion in class groups. Journal of the American Mathematical Society, Tome 19 (2006) no. 3, pp. 527-550. doi: 10.1090/S0894-0347-06-00515-7

[1] Baker, A. The Diophantine equation 𝑦² J. London Math. Soc. 1968 1 9

[2] Brindza, B., Evertse, J.-H., Gyå‘Ry, K. Bounds for the solutions of some Diophantine equations in terms of discriminants J. Austral. Math. Soc. Ser. A 1991 8 26

[3] Brumer, Armand, Kramer, Kenneth The rank of elliptic curves Duke Math. J. 1977 715 743

[4] Bombieri, E., Pila, J. The number of integral points on arcs and ovals Duke Math. J. 1989 337 357

[5] Brumer, Armand, Silverman, Joseph H. The number of elliptic curves over 𝐐 with conductor 𝐍 Manuscripta Math. 1996 95 102

[6] Bugeaud, Yann Bounds for the solutions of superelliptic equations Compositio Math. 1997 187 219

[7] Conway, J. H., Sloane, N. J. A. Sphere packings, lattices and groups 1988

[8] David, Sinnou Points de petite hauteur sur les courbes elliptiques J. Number Theory 1997 104 129

[9] Duke, W. Bounds for arithmetic multiplicities Doc. Math. 1998 163 172

[10] Duke, W., Kowalski, E. A problem of Linnik for elliptic curves and mean-value estimates for automorphic representations Invent. Math. 2000 1 39

[11] Elkies, Noam D. Rational points near curves and small nonzero |𝑥³-𝑦²| via lattice reduction 2000 33 63

[12] Evertse, J.-H., Silverman, J. H. Uniform bounds for the number of solutions to 𝑌ⁿ Math. Proc. Cambridge Philos. Soc. 1986 237 248

[13] Fouvry, É. Sur le comportement en moyenne du rang des courbes 𝑦² 1993 61 84

[14] Gross, Robert, Silverman, Joseph 𝑆-integer points on elliptic curves Pacific J. Math. 1995 263 288

[15] Hajdu, L., Herendi, T. Explicit bounds for the solutions of elliptic equations with rational coefficients J. Symbolic Comput. 1998 361 366

[16] Hasse, Helmut Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage Math. Z. 1930 565 582

[17] Heath-Brown, D. R. The density of rational points on curves and surfaces Ann. of Math. (2) 2002 553 595

[18] Helfgott, H. A. On the square-free sieve Acta Arith. 2004 349 402

[19] Hindry, Marc, Silverman, Joseph H. Diophantine geometry 2000

[20] Kabatjanskiä­, G. A., Levenå¡Teä­N, V. I. Bounds for packings on the sphere and in space Problemy Peredači Informacii 1978 3 25

[21] Kotov, S. V., Trelina, L. A. 𝑆-ganze Punkte auf elliptischen Kurven J. Reine Angew. Math. 1979 28 41

[22] Lang, Serge Elliptic curves: Diophantine analysis 1978

[23] Levenshtein, Vladimir I. Universal bounds for codes and designs 1998 499 648

[24] Mazur, Barry Rational points of abelian varieties with values in towers of number fields Invent. Math. 1972 183 266

[25] Merel, Loã¯C Bornes pour la torsion des courbes elliptiques sur les corps de nombres Invent. Math. 1996 437 449

[26] Mumford, David A remark on Mordell’s conjecture Amer. J. Math. 1965 1007 1016

[27] Murty, M. Ram Exponents of class groups of quadratic fields 1999 229 239

[28] Nekovã¡Å™, Jan Class numbers of quadratic fields and Shimura’s correspondence Math. Ann. 1990 577 594

[29] Pierce, L. B. The 3-part of class numbers of quadratic fields J. London Math. Soc. (2) 2005 579 598

[30] Pintã©R, ÁKos On the magnitude of integer points on elliptic curves Bull. Austral. Math. Soc. 1995 195 199

[31] Schmidt, Wolfgang M. Integer points on curves of genus 1 Compositio Math. 1992 33 59

[32] Serre, Jean-Pierre Lectures on the Mordell-Weil theorem 1997

[33] Serre, Jean-Pierre Local fields 1979

[34] Shintani, Takuro On Dirichlet series whose coefficients are class numbers of integral binary cubic forms J. Math. Soc. Japan 1972 132 188

[35] Siegel, Carl Ludwig Lectures on the geometry of numbers 1989

[36] Silverman, Joseph H. Advanced topics in the arithmetic of elliptic curves 1994

[37] Silverman, Joseph H. The arithmetic of elliptic curves 1986

[38] Silverman, Joseph H. The difference between the Weil height and the canonical height on elliptic curves Math. Comp. 1990 723 743

[39] Silverman, Joseph H. Lower bound for the canonical height on elliptic curves Duke Math. J. 1981 633 648

[40] Silverman, Joseph H. Lower bounds for height functions Duke Math. J. 1984 395 403

[41] Silverman, Joseph H. A quantitative version of Siegel’s theorem: integral points on elliptic curves and Catalan curves J. Reine Angew. Math. 1987 60 100

[42] Soundararajan, K. Divisibility of class numbers of imaginary quadratic fields J. London Math. Soc. (2) 2000 681 690

[43] Wong, Siman Automorphic forms on 𝐺𝐿(2) and the rank of class groups J. Reine Angew. Math. 1999 125 153

[44] Wong, Siman On the rank of ideal class groups 1999 377 383

Cité par Sources :