On the arithmetic of tight closure
Journal of the American Mathematical Society, Tome 19 (2006) no. 3, pp. 659-672

Voir la notice de l'article provenant de la source American Mathematical Society

We provide a negative answer to an old question in tight closure theory by showing that the containment $x^3y^3 \in (x^4,y^4,z^4)^*$ in $\mathbb {K}[x,y,z]/(x^7+y^7-z^7)$ holds for infinitely many but not for almost all prime characteristics of the field $\mathbb {K}$. This proves that tight closure exhibits a strong dependence on the arithmetic of the prime characteristic. The ideal $(x,y,z) \subset \mathbb {K}[x,y,z,u,v,w]/(x^7+y^7-z^7, ux^4+vy^4+wz^4+x^3y^3)$ has then the property that the cohomological dimension fluctuates arithmetically between $0$ and $1$.
DOI : 10.1090/S0894-0347-05-00514-X

Brenner, Holger 1 ; Katzman, Mordechai 1

1 Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, United Kingdom
@article{10_1090_S0894_0347_05_00514_X,
     author = {Brenner, Holger and Katzman, Mordechai},
     title = {On the arithmetic of tight closure},
     journal = {Journal of the American Mathematical Society},
     pages = {659--672},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2006},
     doi = {10.1090/S0894-0347-05-00514-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00514-X/}
}
TY  - JOUR
AU  - Brenner, Holger
AU  - Katzman, Mordechai
TI  - On the arithmetic of tight closure
JO  - Journal of the American Mathematical Society
PY  - 2006
SP  - 659
EP  - 672
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00514-X/
DO  - 10.1090/S0894-0347-05-00514-X
ID  - 10_1090_S0894_0347_05_00514_X
ER  - 
%0 Journal Article
%A Brenner, Holger
%A Katzman, Mordechai
%T On the arithmetic of tight closure
%J Journal of the American Mathematical Society
%D 2006
%P 659-672
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00514-X/
%R 10.1090/S0894-0347-05-00514-X
%F 10_1090_S0894_0347_05_00514_X
Brenner, Holger; Katzman, Mordechai. On the arithmetic of tight closure. Journal of the American Mathematical Society, Tome 19 (2006) no. 3, pp. 659-672. doi: 10.1090/S0894-0347-05-00514-X

[1] Brenner, Holger Tight closure and projective bundles J. Algebra 2003 45 78

[2] Brenner, Holger A characteristic zero Hilbert-Kunz criterion for solid closure in dimension two Math. Res. Lett. 2004 563 574

[3] Brenner, Holger Slopes of vector bundles on projective curves and applications to tight closure problems Trans. Amer. Math. Soc. 2004 371 392

[4] Gieseker, David 𝑝-ample bundles and their Chern classes Nagoya Math. J. 1971 91 116

[5] Han, C., Monsky, P. Some surprising Hilbert-Kunz functions Math. Z. 1993 119 135

[6] Hara, Nobuo A characterization of rational singularities in terms of injectivity of Frobenius maps Amer. J. Math. 1998 981 996

[7] Hara, Nobuo Geometric interpretation of tight closure and test ideals Trans. Amer. Math. Soc. 2001 1885 1906

[8] Hartshorne, Robin Ample vector bundles Inst. Hautes Études Sci. Publ. Math. 1966 63 94

[9] Hartshorne, Robin, Speiser, Robert Local cohomological dimension in characteristic 𝑝 Ann. of Math. (2) 1977 45 79

[10] Hochster, Melvin Solid closure 1994 103 172

[11] Hochster, Melvin Tight closure in equal characteristic, big Cohen-Macaulay algebras, and solid closure 1994 173 196

[12] Hochster, Melvin, Huneke, Craig Tight closure, invariant theory, and the Briançon-Skoda theorem J. Amer. Math. Soc. 1990 31 116

[13] Huneke, Craig Tight closure and its applications 1996

[14] Huneke, Craig Tight closure, parameter ideals, and geometry 1998 187 239

[15] Katzman, Mordechai Finite criteria for weak 𝐹-regularity Illinois J. Math. 1996 453 463

[16] Miyaoka, Yoichi The Chern classes and Kodaira dimension of a minimal variety 1987 449 476

[17] Schoutens, Hans Non-standard tight closure for affine ℂ-algebras Manuscripta Math. 2003 379 412

[18] Serre, Jean-Pierre Cours d’arithmétique 1970 188

[19] Shepherd-Barron, N. I. Semi-stability and reduction mod 𝑝 Topology 1998 659 664

[20] Smith, Karen E. The multiplier ideal is a universal test ideal Comm. Algebra 2000 5915 5929

[21] Smith, Karen E. Tight closure and vanishing theorems 2001 149 213

Cité par Sources :