Shrinkwrapping and the taming of hyperbolic 3-manifolds
Journal of the American Mathematical Society, Tome 19 (2006) no. 2, pp. 385-446

Voir la notice de l'article provenant de la source American Mathematical Society

We introduce a new technique for finding CAT$(-1)$ surfaces in hyperbolic 3-manifolds. We use this to show that a complete hyperbolic 3-manifold with finitely generated fundamental group is geometrically and topologically tame.
DOI : 10.1090/S0894-0347-05-00513-8

Calegari, Danny 1 ; Gabai, David 2

1 Department of Mathematics, Caltech, Pasadena, California 91125
2 Department of Mathematics, Princeton University, Princeton, New Jersey 08544
@article{10_1090_S0894_0347_05_00513_8,
     author = {Calegari, Danny and Gabai, David},
     title = {Shrinkwrapping and the taming of hyperbolic 3-manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {385--446},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2006},
     doi = {10.1090/S0894-0347-05-00513-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00513-8/}
}
TY  - JOUR
AU  - Calegari, Danny
AU  - Gabai, David
TI  - Shrinkwrapping and the taming of hyperbolic 3-manifolds
JO  - Journal of the American Mathematical Society
PY  - 2006
SP  - 385
EP  - 446
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00513-8/
DO  - 10.1090/S0894-0347-05-00513-8
ID  - 10_1090_S0894_0347_05_00513_8
ER  - 
%0 Journal Article
%A Calegari, Danny
%A Gabai, David
%T Shrinkwrapping and the taming of hyperbolic 3-manifolds
%J Journal of the American Mathematical Society
%D 2006
%P 385-446
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00513-8/
%R 10.1090/S0894-0347-05-00513-8
%F 10_1090_S0894_0347_05_00513_8
Calegari, Danny; Gabai, David. Shrinkwrapping and the taming of hyperbolic 3-manifolds. Journal of the American Mathematical Society, Tome 19 (2006) no. 2, pp. 385-446. doi: 10.1090/S0894-0347-05-00513-8

[1] Ahlfors, Lars V. Finitely generated Kleinian groups Amer. J. Math. 1964 413 429

[2] Ahlfors, Lars V. Fundamental polyhedrons and limit point sets of Kleinian groups Proc. Nat. Acad. Sci. U.S.A. 1966 251 254

[3] Athanasopoulos, Ioannis Coincidence set of minimal surfaces for the thin obstacle Manuscripta Math. 1983 199 209

[4] Ballmann, Werner Lectures on spaces of nonpositive curvature 1995

[5] Bers, Lipman Local behavior of solutions of general linear elliptic equations Comm. Pure Appl. Math. 1955 473 496

[6] Bonahon, Francis Bouts des variétés hyperboliques de dimension 3 Ann. of Math. (2) 1986 71 158

[7] Bridson, Martin R., Haefliger, Andrã© Metric spaces of non-positive curvature 1999

[8] Brin, Matthew G., Thickstun, T. L. Open, irreducible 3-manifolds which are end 1-movable Topology 1987 211 233

[9] Brin, Matthew G., Thickstun, T. L. 3-manifolds which are end 1-movable Mem. Amer. Math. Soc. 1989

[10] Brock, Jeffrey F., Bromberg, Kenneth W. On the density of geometrically finite Kleinian groups Acta Math. 2004 33 93

[11] Brock, Jeffrey, Bromberg, Kenneth, Evans, Richard, Souto, Juan Tameness on the boundary and Ahlfors’ measure conjecture Publ. Math. Inst. Hautes Études Sci. 2003 145 166

[12] Brown, E. M., Feustel, C. D. On properly embedding planes in arbitrary 3-manifolds Proc. Amer. Math. Soc. 1985 173 178

[13] Caffarelli, L. A. Further regularity for the Signorini problem Comm. Partial Differential Equations 1979 1067 1075

[14] Canary, Richard D. Ends of hyperbolic 3-manifolds J. Amer. Math. Soc. 1993 1 35

[15] Canary, Richard D. A covering theorem for hyperbolic 3-manifolds and its applications Topology 1996 751 778

[16] Canary, Richard D., Minsky, Yair N. On limits of tame hyperbolic 3-manifolds J. Differential Geom. 1996 1 41

[17] Carleson, Lennart Selected problems on exceptional sets 1967

[18] Choi, Hyeong In, Schoen, Richard The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci curvature Invent. Math. 1985 387 394

[19] Colding, Tobias H., Minicozzi, William P., Ii Minimal surfaces 1999

[20] Epstein, D. B. A., Marden, A. Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces 1987 113 253

[21] Evans, R. A. Tameness persists in weakly type-preserving strong limits Amer. J. Math. 2004 713 737

[22] Federer, Herbert Geometric measure theory 1969

[23] Freedman, Benedict, Freedman, Michael H. Kneser-Haken finiteness for bounded 3-manifolds locally free groups, and cyclic covers Topology 1998 133 147

[24] Freedman, Michael, Hass, Joel, Scott, Peter Least area incompressible surfaces in 3-manifolds Invent. Math. 1983 609 642

[25] Frehse, Jens Two dimensional variational problems with thin obstacles Math. Z. 1975 279 288

[26] Gabai, David Foliations and the topology of 3-manifolds J. Differential Geom. 1983 445 503

[27] Gabai, David On the geometric and topological rigidity of hyperbolic 3-manifolds J. Amer. Math. Soc. 1997 37 74

[28] Gabai, David, Meyerhoff, G. Robert, Thurston, Nathaniel Homotopy hyperbolic 3-manifolds are hyperbolic Ann. of Math. (2) 2003 335 431

[29] Gromov, Misha Metric structures for Riemannian and non-Riemannian spaces 1999

[30] Hass, Joel, Scott, Peter The existence of least area surfaces in 3-manifolds Trans. Amer. Math. Soc. 1988 87 114

[31] Hatcher, Allen Homeomorphisms of sufficiently large 𝑃²-irreducible 3-manifolds Topology 1976 343 347

[32] Hempel, John 3-Manifolds 1976

[33] Johannson, Klaus Homotopy equivalences of 3-manifolds with boundaries 1979

[34] Jones, K. N., Reid, A. W. Vol3 and other exceptional hyperbolic 3-manifolds Proc. Amer. Math. Soc. 2001 2175 2185

[35] Jost, Jã¼Rgen Riemannian geometry and geometric analysis 2002

[36] Kinderlehrer, David The smoothness of the solution of the boundary obstacle problem J. Math. Pures Appl. (9) 1981 193 212

[37] Kleineidam, Gero, Souto, Juan Ending laminations in the Masur domain 2003 105 129

[38] Lewy, Hans On the coincidence set in variational inequalities J. Differential Geometry 1972 497 501

[39] Marden, Albert The geometry of finitely generated kleinian groups Ann. of Math. (2) 1974 383 462

[40] Malcev, A. On isomorphic matrix representations of infinite groups Rec. Math. [Mat. Sbornik] N.S. 1940 405 422

[41] Mccullough, Darryl Compact submanifolds of 3-manifolds with boundary Quart. J. Math. Oxford Ser. (2) 1986 299 307

[42] Mccullough, D., Miller, A., Swarup, G. A. Uniqueness of cores of noncompact 3-manifolds J. London Math. Soc. (2) 1985 548 556

[43] Meeks, William, Iii, Simon, Leon, Yau, Shing Tung Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature Ann. of Math. (2) 1982 621 659

[44] Meeks, William H., Iii, Yau, Shing Tung The classical Plateau problem and the topology of three-dimensional manifolds. The embedding of the solution given by Douglas-Morrey and an analytic proof of Dehn’s lemma Topology 1982 409 442

[45] Meyerhoff, Robert A lower bound for the volume of hyperbolic 3-manifolds Canad. J. Math. 1987 1038 1056

[46] Morgan, John W. On Thurston’s uniformization theorem for three-dimensional manifolds 1984 37 125

[47] Morrey, Charles B., Jr. Multiple integrals in the calculus of variations 1966

[48] Mostow, G. D. Quasi-conformal mappings in 𝑛-space and the rigidity of hyperbolic space forms Inst. Hautes Études Sci. Publ. Math. 1968 53 104

[49] Myers, Robert End reductions, fundamental groups, and covering spaces of irreducible open 3-manifolds Geom. Topol. 2005 971 990

[50] Nitsche, Johannes C. C. Variational problems with inequalities as boundary conditions or how to fashion a cheap hat for Giacometti’s brother Arch. Rational Mech. Anal. 1969 83 113

[51] Ohshika, Ken’Ichi Kleinian groups which are limits of geometrically finite groups Mem. Amer. Math. Soc. 2005

[52] Osserman, Robert A survey of minimal surfaces 1986

[53] Reshetnyak, Yu. G. Two-dimensional manifolds of bounded curvature 1993

[54] Schoen, Richard Estimates for stable minimal surfaces in three-dimensional manifolds 1983 111 126

[55] Schoen, R., Yau, Shing Tung Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature Ann. of Math. (2) 1979 127 142

[56] Scott, G. P. Compact submanifolds of 3-manifolds J. London Math. Soc. (2) 1973 246 250

[57] Souto, Juan A note on the tameness of hyperbolic 3-manifolds Topology 2005 459 474

[58] Stallings, John On fibering certain 3-manifolds 1961 95 100

[59] Thurston, William P. A norm for the homology of 3-manifolds Mem. Amer. Math. Soc. 1986

[60] Tucker, Thomas W. Non-compact 3-manifolds and the missing-boundary problem Topology 1974 267 273

[61] Tucker, Thomas W. On the Fox-Artin sphere and surfaces in noncompact 3-manifolds Quart. J. Math. Oxford Ser. (2) 1977 243 253

[62] Vekua, I. N. Systems of differential equations of the first order of elliptic type and boundary value problems, with an application to the theory of shells Mat. Sbornik N.S. 1952 217 314

[63] Waldhausen, Friedhelm On irreducible 3-manifolds which are sufficiently large Ann. of Math. (2) 1968 56 88

Cité par Sources :