Operads and knot spaces
Journal of the American Mathematical Society, Tome 19 (2006) no. 2, pp. 461-486

Voir la notice de l'article provenant de la source American Mathematical Society

We model the homotopy fiber $E_m$ of the inclusion of the space of long knots in dimension $m$ into the corresponding space of immersions, through an operad structure on compactifications of configuration spaces. Development of this operad structure involves defining an operad structure on the simplicial model for the two-sphere. We apply results of McClure and Smith to deduce the existence of a two-cubes action on $E_m$.
DOI : 10.1090/S0894-0347-05-00510-2

Sinha, Dev 1

1 Department of Mathematics, University of Oregon, Eugene, Oregon 97403
@article{10_1090_S0894_0347_05_00510_2,
     author = {Sinha, Dev},
     title = {Operads and knot spaces},
     journal = {Journal of the American Mathematical Society},
     pages = {461--486},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2006},
     doi = {10.1090/S0894-0347-05-00510-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00510-2/}
}
TY  - JOUR
AU  - Sinha, Dev
TI  - Operads and knot spaces
JO  - Journal of the American Mathematical Society
PY  - 2006
SP  - 461
EP  - 486
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00510-2/
DO  - 10.1090/S0894-0347-05-00510-2
ID  - 10_1090_S0894_0347_05_00510_2
ER  - 
%0 Journal Article
%A Sinha, Dev
%T Operads and knot spaces
%J Journal of the American Mathematical Society
%D 2006
%P 461-486
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00510-2/
%R 10.1090/S0894-0347-05-00510-2
%F 10_1090_S0894_0347_05_00510_2
Sinha, Dev. Operads and knot spaces. Journal of the American Mathematical Society, Tome 19 (2006) no. 2, pp. 461-486. doi: 10.1090/S0894-0347-05-00510-2

[1] Axelrod, Scott, Singer, I. M. Chern-Simons perturbation theory. II J. Differential Geom. 1994 173 213

[2] Boardman, J. M. Homotopy structures and the language of trees 1971 37 58

[3] Boardman, J. M., Vogt, R. M. Homotopy invariant algebraic structures on topological spaces 1973

[4] Bousfield, A. K., Kan, D. M. Homotopy limits, completions and localizations 1972

[5] Bousfield, A. K. On the homology spectral sequence of a cosimplicial space Amer. J. Math. 1987 361 394

[6] Budney, Ryan, Conant, James, Scannell, Kevin P., Sinha, Dev New perspectives on self-linking Adv. Math. 2005 78 113

[7] Fulton, William, Macpherson, Robert A compactification of configuration spaces Ann. of Math. (2) 1994 183 225

[8] Gaiffi, Giovanni Models for real subspace arrangements and stratified manifolds Int. Math. Res. Not. 2003 627 656

[9] Gerstenhaber, Murray, Voronov, Alexander A. Homotopy 𝐺-algebras and moduli space operad Internat. Math. Res. Notices 1995 141 153

[10] Goodwillie, Thomas G. Calculus. II. Analytic functors 𝐾-Theory 1991/92 295 332

[11] Weiss, Michael Embeddings from the point of view of immersion theory. I Geom. Topol. 1999 67 101

[12] Goodwillie, Thomas G., Klein, John R., Weiss, Michael S. Spaces of smooth embeddings, disjunction and surgery 2001 221 284

[13] Goodwillie, Thomas G., Klein, John R., Weiss, Michael S. A Haefliger style description of the embedding calculus tower Topology 2003 509 524

[14] Hirschhorn, Philip S. Model categories and their localizations 2003

[15] Kontsevich, Maxim Operads and motives in deformation quantization Lett. Math. Phys. 1999 35 72

[16] Markl, Martin A compactification of the real configuration space as an operadic completion J. Algebra 1999 185 204

[17] Markl, Martin, Shnider, Steve, Stasheff, Jim Operads in algebra, topology and physics 2002

[18] Boardman, J. M., Vogt, R. M. Homotopy invariant algebraic structures on topological spaces 1973

[19] Mcclure, James E., Smith, Jeffrey H. A solution of Deligne’s Hochschild cohomology conjecture 2002 153 193

[20] Mcclure, James E., Smith, Jeffrey H. Cosimplicial objects and little 𝑛-cubes. I Amer. J. Math. 2004 1109 1153

[21] Mcclure, James E., Smith, Jeffrey H. Operads and cosimplicial objects: an introduction 2004 133 171

[22] Mislin, Guido Wall’s finiteness obstruction 1995 1259 1291

[23] Palais, Richard S. Homotopy theory of infinite dimensional manifolds Topology 1966 1 16

[24] Rector, David L. Steenrod operations in the Eilenberg-Moore spectral sequence Comment. Math. Helv. 1970 540 552

[25] Scannell, Kevin P., Sinha, Dev P. A one-dimensional embedding complex J. Pure Appl. Algebra 2002 93 107

[26] Shipley, Brooke E. Convergence of the homology spectral sequence of a cosimplicial space Amer. J. Math. 1996 179 207

[27] Sinha, Dev P. Manifold-theoretic compactifications of configuration spaces Selecta Math. (N.S.) 2004 391 428

[28] Smale, Stephen The classification of immersions of spheres in Euclidean spaces Ann. of Math. (2) 1959 327 344

[29] Tourtchine, V. On the homology of the spaces of long knots 2004 23 52

[30] Vassiliev, V. A. Complements of discriminants of smooth maps: topology and applications 1992

[31] Vassiliev, Victor A. Topology of two-connected graphs and homology of spaces of knots 1999 253 286

[32] Weiss, Michael Calculus of embeddings Bull. Amer. Math. Soc. (N.S.) 1996 177 187

[33] Weiss, Michael Embeddings from the point of view of immersion theory. I Geom. Topol. 1999 67 101

Cité par Sources :