Duality of Hardy and BMO spaces associated with operators with heat kernel bounds
Journal of the American Mathematical Society, Tome 18 (2005) no. 4, pp. 943-973

Voir la notice de l'article provenant de la source American Mathematical Society

Let $L$ be the infinitesimal generator of an analytic semigroup on $L^2({\mathbb R}^n)$ with suitable upper bounds on its heat kernels. Auscher, Duong, and McIntosh defined a Hardy space $H_L^1$ by means of an area integral function associated with the operator $L$. By using a variant of the maximal function associated with the semigroup $\{e^{-tL}\}_{t\geq 0}$, a space $\textrm {BMO}_L$ of functions of BMO type was defined by Duong and Yan and it generalizes the classical BMO space. In this paper, we show that if $L$ has a bounded holomorphic functional calculus on $L^2({\mathbb R}^n)$, then the dual space of $H_L^1$ is $\textrm {BMO}_{L^{\ast }}$ where $L^{\ast }$ is the adjoint operator of $L$. We then obtain a characterization of the space $\textrm {BMO}_L$ in terms of the Carleson measure. We also discuss the dimensions of the kernel spaces ${\mathcal K}_L$ of BMO$_{ L}$ when $L$ is a second-order elliptic operator of divergence form and when $L$ is a Schrödinger operator, and study the inclusion between the classical BMO space and $\textrm {BMO}_L$ spaces associated with operators.
DOI : 10.1090/S0894-0347-05-00496-0

Duong, Xuan 1 ; Yan, Lixin 2

1 Department of Mathematics, Macquarie University, NSW 2109, Australia
2 Department of Mathematics, Macquarie University, NSW 2109, Australia and Department of Mathematics, Zhongshan University, Guangzhou, 510275, People’s Republic of China
@article{10_1090_S0894_0347_05_00496_0,
     author = {Duong, Xuan and Yan, Lixin},
     title = {Duality of {Hardy} and {BMO} spaces associated with operators with heat kernel bounds},
     journal = {Journal of the American Mathematical Society},
     pages = {943--973},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00496-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00496-0/}
}
TY  - JOUR
AU  - Duong, Xuan
AU  - Yan, Lixin
TI  - Duality of Hardy and BMO spaces associated with operators with heat kernel bounds
JO  - Journal of the American Mathematical Society
PY  - 2005
SP  - 943
EP  - 973
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00496-0/
DO  - 10.1090/S0894-0347-05-00496-0
ID  - 10_1090_S0894_0347_05_00496_0
ER  - 
%0 Journal Article
%A Duong, Xuan
%A Yan, Lixin
%T Duality of Hardy and BMO spaces associated with operators with heat kernel bounds
%J Journal of the American Mathematical Society
%D 2005
%P 943-973
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00496-0/
%R 10.1090/S0894-0347-05-00496-0
%F 10_1090_S0894_0347_05_00496_0
Duong, Xuan; Yan, Lixin. Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. Journal of the American Mathematical Society, Tome 18 (2005) no. 4, pp. 943-973. doi: 10.1090/S0894-0347-05-00496-0

[1] Auscher, Pascal, Hofmann, Steve, Lewis, John L., Tchamitchian, Philippe Extrapolation of Carleson measures and the analyticity of Kato’s square-root operators Acta Math. 2001 161 190

[2] Auscher, P., Tchamitchian, P. Calcul fontionnel précisé pour des opérateurs elliptiques complexes en dimension un (et applications à certaines équations elliptiques complexes en dimension deux) Ann. Inst. Fourier (Grenoble) 1995 721 778

[3] Auscher, Pascal, Tchamitchian, Philippe Square root problem for divergence operators and related topics Astérisque 1998

[4] Coulhon, Thierry, Duong, Xuan Thinh Maximal regularity and kernel bounds: observations on a theorem by Hieber and Prüss Adv. Differential Equations 2000 343 368

[5] Cowling, Michael, Doust, Ian, Mcintosh, Alan, Yagi, Atsushi Banach space operators with a bounded 𝐻^{∞} functional calculus J. Austral. Math. Soc. Ser. A 1996 51 89

[6] Coifman, R. R., Meyer, Y., Stein, E. M. Un nouvel éspace fonctionnel adapté à l’étude des opérateurs définis par des intégrales singulières 1983 1 15

[7] Coifman, R. R., Meyer, Y., Stein, E. M. Some new function spaces and their applications to harmonic analysis J. Funct. Anal. 1985 304 335

[8] Coifman, Ronald R., Weiss, Guido Extensions of Hardy spaces and their use in analysis Bull. Amer. Math. Soc. 1977 569 645

[9] Davies, E. B. Heat kernels and spectral theory 1989

[10] Deng, D. G. On a generalized Carleson inequality Studia Math. 1984 245 251

[11] Dziubaå„Ski, J., Garrigã³S, G., Martã­Nez, T., Torrea, J. L., Zienkiewicz, J. 𝐵𝑀𝑂 spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality Math. Z. 2005 329 356

[12] Duong, Xuan Thinh, Macintosh, Alan Singular integral operators with non-smooth kernels on irregular domains Rev. Mat. Iberoamericana 1999 233 265

[13] Duong, Xuan T., Robinson, Derek W. Semigroup kernels, Poisson bounds, and holomorphic functional calculus J. Funct. Anal. 1996 89 128

[14] Dziubaå„Ski, Jacek, Zienkiewicz, Jacek Hardy spaces associated with some Schrödinger operators Studia Math. 1997 149 160

[15] Fefferman, Charles Characterizations of bounded mean oscillation Bull. Amer. Math. Soc. 1971 587 588

[16] Fefferman, C., Stein, E. M. 𝐻^{𝑝} spaces of several variables Acta Math. 1972 137 193

[17] Hofmann, Steve, Martell, Josã© Marã­A 𝐿^{𝑝} bounds for Riesz transforms and square roots associated to second order elliptic operators Publ. Mat. 2003 497 515

[18] Journã©, Jean-Lin Calderón-Zygmund operators, pseudodifferential operators and the Cauchy integral of Calderón 1983

[19] John, F., Nirenberg, L. On functions of bounded mean oscillation Comm. Pure Appl. Math. 1961 415 426

[20] Li, Peter Harmonic sections of polynomial growth Math. Res. Lett. 1997 35 44

[21] Li, Peter, Wang, Jiaping Counting dimensions of 𝐿-harmonic functions Ann. of Math. (2) 2000 645 658

[22] Martell, Josã© Marã­A Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications Studia Math. 2004 113 145

[23] Mcintosh, Alan Operators which have an 𝐻_{∞} functional calculus 1986 210 231

[24] Semmes, Stephen Square function estimates and the 𝑇(𝑏) theorem Proc. Amer. Math. Soc. 1990 721 726

[25] Shen, Zhong Wei 𝐿^{𝑝} estimates for Schrödinger operators with certain potentials Ann. Inst. Fourier (Grenoble) 1995 513 546

[26] Shen, Zhongwei On fundamental solutions of generalized Schrödinger operators J. Funct. Anal. 1999 521 564

[27] Stein, Elias M. Singular integrals and differentiability properties of functions 1970

[28] Stein, Elias M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals 1993

[29] Stein, Elias M., Weiss, Guido On the theory of harmonic functions of several variables. I. The theory of 𝐻^{𝑝}-spaces Acta Math. 1960 25 62

[30] Strauss, Walter A. Partial differential equations 1992

[31] Torchinsky, Alberto Real-variable methods in harmonic analysis 1986

[32] Yan, Lixin Littlewood-Paley functions associated to second order elliptic operators Math. Z. 2004 655 666

[33] Yosida, Kã´Saku Functional analysis 1978

[34] Zhu, Yueping Area functions on Hardy spaces associated to Schrödinger operators Acta Math. Sci. Ser. B (Engl. Ed.) 2003 521 530

Cité par Sources :