Boundary rigidity and stability for generic simple metrics
Journal of the American Mathematical Society, Tome 18 (2005) no. 4, pp. 975-1003

Voir la notice de l'article provenant de la source American Mathematical Society

We study the boundary rigidity problem for compact Riemannian manifolds with boundary $(M,g)$: is the Riemannian metric $g$ uniquely determined, up to an action of diffeomorphism fixing the boundary, by the distance function $\rho _g(x,y)$ known for all boundary points $x$ and $y$? We prove in this paper local and global uniqueness and stability for the boundary rigidity problem for generic simple metrics. More specifically, we show that there exists a generic set $\mathcal {G}$ of simple Riemannian metrics such that for any $g_0\in \mathcal {G}$, any two Riemannian metrics in some neighborhood of $g_0$ having the same distance function, must be isometric. Similarly, there is a generic set of pairs of simple metrics with the same property. We also prove Hölder type stability estimates for this problem for metrics which are close to a given one in $\mathcal {G}$.
DOI : 10.1090/S0894-0347-05-00494-7

Stefanov, Plamen 1 ; Uhlmann, Gunther 2

1 Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
2 Department of Mathematics, University of Washington, Seattle, Washington 98195
@article{10_1090_S0894_0347_05_00494_7,
     author = {Stefanov, Plamen and Uhlmann, Gunther},
     title = {Boundary rigidity and stability for generic simple metrics},
     journal = {Journal of the American Mathematical Society},
     pages = {975--1003},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00494-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00494-7/}
}
TY  - JOUR
AU  - Stefanov, Plamen
AU  - Uhlmann, Gunther
TI  - Boundary rigidity and stability for generic simple metrics
JO  - Journal of the American Mathematical Society
PY  - 2005
SP  - 975
EP  - 1003
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00494-7/
DO  - 10.1090/S0894-0347-05-00494-7
ID  - 10_1090_S0894_0347_05_00494_7
ER  - 
%0 Journal Article
%A Stefanov, Plamen
%A Uhlmann, Gunther
%T Boundary rigidity and stability for generic simple metrics
%J Journal of the American Mathematical Society
%D 2005
%P 975-1003
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00494-7/
%R 10.1090/S0894-0347-05-00494-7
%F 10_1090_S0894_0347_05_00494_7
Stefanov, Plamen; Uhlmann, Gunther. Boundary rigidity and stability for generic simple metrics. Journal of the American Mathematical Society, Tome 18 (2005) no. 4, pp. 975-1003. doi: 10.1090/S0894-0347-05-00494-7

[1] Anikonov, Yu. E., Romanov, V. G. On uniqueness of determination of a form of first degree by its integrals along geodesics J. Inverse Ill-Posed Probl. 1997

[2] Arnol′D, Vladimir I. Ordinary differential equations 1992 334

[3] Besson, G., Courtois, G., Gallot, S. Entropies et rigidités des espaces localement symétriques de courbure strictement négative Geom. Funct. Anal. 1995 731 799

[4] Boman, Jan, Quinto, Eric Todd Support theorems for real-analytic Radon transforms Duke Math. J. 1987 943 948

[5] Croke, Christopher B. Rigidity for surfaces of nonpositive curvature Comment. Math. Helv. 1990 150 169

[6] Croke, Christopher B. Rigidity and the distance between boundary points J. Differential Geom. 1991 445 464

[7] Croke, Christopher B., Dairbekov, Nurlan S., Sharafutdinov, Vladimir A. Local boundary rigidity of a compact Riemannian manifold with curvature bounded above Trans. Amer. Math. Soc. 2000 3937 3956

[8] Gromov, Mikhael Filling Riemannian manifolds J. Differential Geom. 1983 1 147

[9] Lassas, Matti, Sharafutdinov, Vladimir, Uhlmann, Gunther Semiglobal boundary rigidity for Riemannian metrics Math. Ann. 2003 767 793

[10] Michel, Ren㩠Sur la rigidité imposée par la longueur des géodésiques Invent. Math. 1981/82 71 83

[11] Morrey, C. B., Jr., Nirenberg, L. On the analyticity of the solutions of linear elliptic systems of partial differential equations Comm. Pure Appl. Math. 1957 271 290

[12] Muhometov, R. G. The reconstruction problem of a two-dimensional Riemannian metric, and integral geometry Dokl. Akad. Nauk SSSR 1977 32 35

[13] Muhometov, R. G. On a problem of reconstructing Riemannian metrics Sibirsk. Mat. Zh. 1981

[14] Muhometov, R. G., Romanov, V. G. On the problem of finding an isotropic Riemannian metric in an 𝑛-dimensional space Dokl. Akad. Nauk SSSR 1978 41 44

[15] Nachman, Adrian I. Reconstructions from boundary measurements Ann. of Math. (2) 1988 531 576

[16] Otal, Jean-Pierre Sur les longueurs des géodésiques d’une métrique à courbure négative dans le disque Comment. Math. Helv. 1990 334 347

[17] Pestov, L. N., Sharafutdinov, V. A. Integral geometry of tensor fields on a manifold of negative curvature Sibirsk. Mat. Zh. 1988

[18] Sharafutdinov, V. A. Integral geometry of tensor fields 1994 271

[19] Sharafutdinov, V. A. A problem in integral geometry in a nonconvex domain Sibirsk. Mat. Zh. 2002 1430 1442

[20] Sharafutdinov, Vladimir, Uhlmann, Gunther On deformation boundary rigidity and spectral rigidity of Riemannian surfaces with no focal points J. Differential Geom. 2000 93 110

[21] Stefanov, Plamen, Uhlmann, Gunther Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media J. Funct. Anal. 1998 330 358

[22] Stefanov, Plamen, Uhlmann, Gunther Rigidity for metrics with the same lengths of geodesics Math. Res. Lett. 1998 83 96

[23] Stefanov, Plamen, Uhlmann, Gunther Stability estimates for the X-ray transform of tensor fields and boundary rigidity Duke Math. J. 2004 445 467

[24] Taylor, Michael E. Partial differential equations 1996

[25] Triebel, H. Interpolation theory, function spaces, differential operators 1978 528

[26] Trã¨Ves, Franã§Ois Introduction to pseudodifferential and Fourier integral operators. Vol. 1 1980

[27] Uhlmann, Gunther, Wang, Jenn-Nan Boundary determination of a Riemannian metric by the localized boundary distance function Adv. in Appl. Math. 2003 379 387

[28] Wang, Jenn-Nan Stability for the reconstruction of a Riemannian metric by boundary measurements Inverse Problems 1999 1177 1192

Cité par Sources :