Simple Hironaka resolution in characteristic zero
Journal of the American Mathematical Society, Tome 18 (2005) no. 4, pp. 779-822

Voir la notice de l'article provenant de la source American Mathematical Society

Building upon work of Villamayor and Bierstone-Milman we give a proof of the canonical Hironaka principalization and desingularization. The idea of “homogenized ideals" introduced in the paper gives a priori the canonicity of the algorithm and radically simplifies the proof.
DOI : 10.1090/S0894-0347-05-00493-5

Włodarczyk, Jarosław 1

1 Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
@article{10_1090_S0894_0347_05_00493_5,
     author = {W\r{A}‚odarczyk, Jaros\r{A}‚aw},
     title = {Simple {Hironaka} resolution in characteristic zero},
     journal = {Journal of the American Mathematical Society},
     pages = {779--822},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00493-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00493-5/}
}
TY  - JOUR
AU  - Włodarczyk, Jarosław
TI  - Simple Hironaka resolution in characteristic zero
JO  - Journal of the American Mathematical Society
PY  - 2005
SP  - 779
EP  - 822
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00493-5/
DO  - 10.1090/S0894-0347-05-00493-5
ID  - 10_1090_S0894_0347_05_00493_5
ER  - 
%0 Journal Article
%A Włodarczyk, Jarosław
%T Simple Hironaka resolution in characteristic zero
%J Journal of the American Mathematical Society
%D 2005
%P 779-822
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00493-5/
%R 10.1090/S0894-0347-05-00493-5
%F 10_1090_S0894_0347_05_00493_5
Włodarczyk, Jarosław. Simple Hironaka resolution in characteristic zero. Journal of the American Mathematical Society, Tome 18 (2005) no. 4, pp. 779-822. doi: 10.1090/S0894-0347-05-00493-5

[1] Abhyankar, Shreeram S. Desingularization of plane curves 1983 1 45

[2] Abhyankar, Shreeram S. Good points of a hypersurface Adv. in Math. 1988 87 256

[3] Abramovich, D., De Jong, A. J. Smoothness, semistability, and toroidal geometry J. Algebraic Geom. 1997 789 801

[4] Abramovich, Dan, Wang, Jianhua Equivariant resolution of singularities in characteristic 0 Math. Res. Lett. 1997 427 433

[5] Aroca, Jose M., Hironaka, Heisuke, Vicente, Josã© L. The theory of the maximal contact 1975 135

[6] Aroca, Josã© M., Hironaka, Heisuke, Vicente, Josã© L. Desingularization theorems 1977

[7] Bierstone, Edward, Milman, Pierre D. Semianalytic and subanalytic sets Inst. Hautes Études Sci. Publ. Math. 1988 5 42

[8] Bierstone, Edward, Milman, Pierre D. Uniformization of analytic spaces J. Amer. Math. Soc. 1989 801 836

[9] Bierstone, Edward, Milman, Pierre D. A simple constructive proof of canonical resolution of singularities 1991 11 30

[10] Bierstone, Edward, Milman, Pierre D. Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant Invent. Math. 1997 207 302

[11] Bierstone, Edward, Milman, Pierre D. Desingularization algorithms. I. Role of exceptional divisors Mosc. Math. J. 2003

[12] Bravo, A., Villamayor U., O. A strengthening of resolution of singularities in characteristic zero Proc. London Math. Soc. (3) 2003 327 357

[13] Bogomolov, Fedor A., Pantev, Tony G. Weak Hironaka theorem Math. Res. Lett. 1996 299 307

[14] Cossart, Vincent Desingularization of embedded excellent surfaces Tohoku Math. J. (2) 1981 25 33

[15] Cutkosky, Steven Dale Resolution of singularities 2004

[16] Encinas, Santiago, Hauser, Herwig Strong resolution of singularities in characteristic zero Comment. Math. Helv. 2002 821 845

[17] Encinas, S., Villamayor, O. Good points and constructive resolution of singularities Acta Math. 1998 109 158

[18] Encinas, Santiago, Villamayor, Orlando A course on constructive desingularization and equivariance 2000 147 227

[19] Encinas, Santiago, Villamayor, Orlando A new proof of desingularization over fields of characteristic zero Rev. Mat. Iberoamericana 2003 339 353

[20] Giraud, Jean Sur la théorie du contact maximal Math. Z. 1974 285 310

[21] Hartshorne, Robin Algebraic geometry 1977

[22] Hauser, Herwig The Hironaka theorem on resolution of singularities (or: A proof we always wanted to understand) Bull. Amer. Math. Soc. (N.S.) 2003 323 403

[23] Hironaka, Heisuke An example of a non-Kählerian complex-analytic deformation of Kählerian complex structures Ann. of Math. (2) 1962 190 208

[24] Hironaka, Heisuke Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II Ann. of Math. (2) 1964

[25] Hironaka, Heisuke Introduction to the theory of infinitely near singular points 1974

[26] Hironaka, Heisuke Idealistic exponents of singularity 1977 52 125

[27] Goldin, Rebecca, Teissier, Bernard Resolving singularities of plane analytic branches with one toric morphism 2000 315 340

[28] Jelonek, Zbigniew The extension of regular and rational embeddings Math. Ann. 1987 113 120

[29] De Jong, A. J. Smoothness, semi-stability and alterations Inst. Hautes Études Sci. Publ. Math. 1996 51 93

[30] Lipman, Joseph Introduction to resolution of singularities 1975 187 230

[31] Oda, Tadao Infinitely very near singular points 1987 363 404

[32] Villamayor, Orlando Constructiveness of Hironaka’s resolution Ann. Sci. École Norm. Sup. (4) 1989 1 32

[33] Villamayor U., O. E. Patching local uniformizations Ann. Sci. École Norm. Sup. (4) 1992 629 677

[34] Villamayor U., Orlando Introduction to the algorithm of resolution 1996 123 154

Cité par Sources :