The failure of rational dilation on a triply connected domain
Journal of the American Mathematical Society, Tome 18 (2005) no. 4, pp. 873-918

Voir la notice de l'article provenant de la source American Mathematical Society

For $R$ a bounded triply connected domain with boundary consisting of disjoint analytic curves there exists an operator $T$ on a complex Hilbert space $\mathcal H$ so that the closure of $R$ is a spectral set for $T$, but $T$ does not dilate to a normal operator with spectrum in $B$, the boundary of $R$. There is considerable overlap with the construction of an example on such a domain recently obtained by Agler, Harland and Raphael using numerical computations and work of Agler and Harland.
DOI : 10.1090/S0894-0347-05-00491-1

Dritschel, Michael 1 ; McCullough, Scott 2

1 School of Mathematics and Statistics, Merz Court, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, United Kingdom
2 Department of Mathematics, University of Florida, Box 118105, Gainesville, Florida 32611-8105
@article{10_1090_S0894_0347_05_00491_1,
     author = {Dritschel, Michael and McCullough, Scott},
     title = {The failure of rational dilation on a triply connected domain},
     journal = {Journal of the American Mathematical Society},
     pages = {873--918},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00491-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00491-1/}
}
TY  - JOUR
AU  - Dritschel, Michael
AU  - McCullough, Scott
TI  - The failure of rational dilation on a triply connected domain
JO  - Journal of the American Mathematical Society
PY  - 2005
SP  - 873
EP  - 918
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00491-1/
DO  - 10.1090/S0894-0347-05-00491-1
ID  - 10_1090_S0894_0347_05_00491_1
ER  - 
%0 Journal Article
%A Dritschel, Michael
%A McCullough, Scott
%T The failure of rational dilation on a triply connected domain
%J Journal of the American Mathematical Society
%D 2005
%P 873-918
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00491-1/
%R 10.1090/S0894-0347-05-00491-1
%F 10_1090_S0894_0347_05_00491_1
Dritschel, Michael; McCullough, Scott. The failure of rational dilation on a triply connected domain. Journal of the American Mathematical Society, Tome 18 (2005) no. 4, pp. 873-918. doi: 10.1090/S0894-0347-05-00491-1

[1] Abrahamse, M. B., Douglas, R. G. A class of subnormal operators related to multiply-connected domains Advances in Math. 1976 106 148

[2] Agler, Jim Rational dilation on an annulus Ann. of Math. (2) 1985 537 563

[3] Agler, Jim On the representation of certain holomorphic functions defined on a polydisc 1990 47 66

[4] Agler, Jim, Mccarthy, John E. Nevanlinna-Pick interpolation on the bidisk J. Reine Angew. Math. 1999 191 204

[5] Agler, Jim, Mccarthy, John E. Pick interpolation and Hilbert function spaces 2002

[6] Arveson, William Subalgebras of 𝐶*-algebras. II Acta Math. 1972 271 308

[7] Arveson, William B. Subalgebras of 𝐶*-algebras Acta Math. 1969 141 224

[8] Ball, Joseph A., Clancey, Kevin F. Reproducing kernels for Hardy spaces on multiply connected domains Integral Equations Operator Theory 1996 35 57

[9] Ball, Joseph A., Trent, Tavan T. Unitary colligations, reproducing kernel Hilbert spaces, and Nevanlinna-Pick interpolation in several variables J. Funct. Anal. 1998 1 61

[10] Ball, Joseph A., Trent, Tavan T., Vinnikov, Victor Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces 2001 89 138

[11] Ball, Joseph A., Vinnikov, Victor Hardy spaces on a finite bordered Riemann surface, multivariable operator model theory and Fourier analysis along a unimodular curve 2001 37 56

[12] Bergman, Stefan, Chalmers, Bruce A procedure for conformal mapping of triply-connected domains Math. Comp. 1967 527 542

[13] Clancey, Kevin F. Toeplitz operators on multiply connected domains and theta functions 1988 311 355

[14] Clancey, Kevin F. Representing measures on multiply connected planar domains Illinois J. Math. 1991 286 311

[15] Conway, John B. Functions of one complex variable 1978

[16] Conway, John B. The theory of subnormal operators 1991

[17] Farkas, H. M., Kra, I. Riemann surfaces 1992

[18] Fay, John D. Theta functions on Riemann surfaces 1973

[19] Fisher, Stephen D. Function theory on planar domains 1983

[20] Grunsky, Helmut Lectures on theory of functions in multiply connected domains 1978 253

[21] Holmes, Richard B. Geometric functional analysis and its applications 1975

[22] Mumford, David Tata lectures on theta. I 1983

[23] Mumford, David Tata lectures on theta. II 1984

[24] Nehari, Zeev Conformal mapping 1975

[25] Paulsen, Vern Completely bounded maps and operator algebras 2002

[26] Paulsen, Vern I. Completely bounded maps and dilations 1986

[27] Pisier, Gilles A polynomially bounded operator on Hilbert space which is not similar to a contraction J. Amer. Math. Soc. 1997 351 369

[28] Sarason, Donald The 𝐻^{𝑝} spaces of an annulus Mem. Amer. Math. Soc. 1965 78

[29] Vinnikov, V. L., Fedorov, S. I. On the Nevanlinna-Pick interpolation in multiply connected domains Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 1998

Cité par Sources :