Voir la notice de l'article provenant de la source American Mathematical Society
Dritschel, Michael 1 ; McCullough, Scott 2
@article{10_1090_S0894_0347_05_00491_1,
     author = {Dritschel, Michael and McCullough, Scott},
     title = {The failure of rational dilation on a triply connected domain},
     journal = {Journal of the American Mathematical Society},
     pages = {873--918},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00491-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00491-1/}
}
                      
                      
                    TY - JOUR AU - Dritschel, Michael AU - McCullough, Scott TI - The failure of rational dilation on a triply connected domain JO - Journal of the American Mathematical Society PY - 2005 SP - 873 EP - 918 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00491-1/ DO - 10.1090/S0894-0347-05-00491-1 ID - 10_1090_S0894_0347_05_00491_1 ER -
%0 Journal Article %A Dritschel, Michael %A McCullough, Scott %T The failure of rational dilation on a triply connected domain %J Journal of the American Mathematical Society %D 2005 %P 873-918 %V 18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00491-1/ %R 10.1090/S0894-0347-05-00491-1 %F 10_1090_S0894_0347_05_00491_1
Dritschel, Michael; McCullough, Scott. The failure of rational dilation on a triply connected domain. Journal of the American Mathematical Society, Tome 18 (2005) no. 4, pp. 873-918. doi: 10.1090/S0894-0347-05-00491-1
[1] , A class of subnormal operators related to multiply-connected domains Advances in Math. 1976 106 148
[2] Rational dilation on an annulus Ann. of Math. (2) 1985 537 563
[3] On the representation of certain holomorphic functions defined on a polydisc 1990 47 66
[4] , Nevanlinna-Pick interpolation on the bidisk J. Reine Angew. Math. 1999 191 204
[5] , Pick interpolation and Hilbert function spaces 2002
[6] Subalgebras of ð¶*-algebras. II Acta Math. 1972 271 308
[7] Subalgebras of ð¶*-algebras Acta Math. 1969 141 224
[8] , Reproducing kernels for Hardy spaces on multiply connected domains Integral Equations Operator Theory 1996 35 57
[9] , Unitary colligations, reproducing kernel Hilbert spaces, and Nevanlinna-Pick interpolation in several variables J. Funct. Anal. 1998 1 61
[10] , , Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces 2001 89 138
[11] , Hardy spaces on a finite bordered Riemann surface, multivariable operator model theory and Fourier analysis along a unimodular curve 2001 37 56
[12] , A procedure for conformal mapping of triply-connected domains Math. Comp. 1967 527 542
[13] Toeplitz operators on multiply connected domains and theta functions 1988 311 355
[14] Representing measures on multiply connected planar domains Illinois J. Math. 1991 286 311
[15] Functions of one complex variable 1978
[16] The theory of subnormal operators 1991
[17] , Riemann surfaces 1992
[18] Theta functions on Riemann surfaces 1973
[19] Function theory on planar domains 1983
[20] Lectures on theory of functions in multiply connected domains 1978 253
[21] Geometric functional analysis and its applications 1975
[22] Tata lectures on theta. I 1983
[23] Tata lectures on theta. II 1984
[24] Conformal mapping 1975
[25] Completely bounded maps and operator algebras 2002
[26] Completely bounded maps and dilations 1986
[27] A polynomially bounded operator on Hilbert space which is not similar to a contraction J. Amer. Math. Soc. 1997 351 369
[28] The ð»^{ð} spaces of an annulus Mem. Amer. Math. Soc. 1965 78
[29] , On the Nevanlinna-Pick interpolation in multiply connected domains Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 1998
Cité par Sources :
