The cohomological equation for Roth-type interval exchange maps
Journal of the American Mathematical Society, Tome 18 (2005) no. 4, pp. 823-872

Voir la notice de l'article provenant de la source American Mathematical Society

We exhibit an explicit class of minimal interval exchange maps (i.e.m.’s) $T$ for which the cohomological equation \[ \Psi -\Psi \circ T=\Phi \] has a bounded solution $\Psi$ provided that the datum $\Phi$ belongs to a finite codimension subspace of the space of functions having on each interval a derivative of bounded variation. The proof is purely dynamical and is based on a renormalization argument and on Gottshalk-Hedlund’s theorem. If the datum is more regular the loss of differentiability in solving the cohomological equation will be the same. The class of interval exchange maps is characterized in terms of a diophantine condition of Roth type imposed to an acceleration of the Rauzy-Veech-Zorich continued fraction expansion associated to $T$. More precisely one must impose a growth rate condition for the matrices appearing in the continued fraction algorithm together with a spectral gap condition (which guarantees unique ergodicity) and a coherence condition. We also prove that the set of Roth-type interval exchange maps has full measure. In the appendices we construct concrete examples of Roth-type i.e.m.’s and we show how the growth rate condition alone does not imply unique ergodicity.
DOI : 10.1090/S0894-0347-05-00490-X

Marmi, S. 1 ; Moussa, P. 2 ; Yoccoz, J.-C. 3

1 Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
2 Service de Physique Théorique, CEA/Saclay, 91191 Gif-Sur-Yvette, France
3 Collège de France, 3, Rue d’Ulm, 75005 Paris, France
@article{10_1090_S0894_0347_05_00490_X,
     author = {Marmi, S. and Moussa, P. and Yoccoz, J.-C.},
     title = {The cohomological equation for {Roth-type} interval exchange maps},
     journal = {Journal of the American Mathematical Society},
     pages = {823--872},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00490-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00490-X/}
}
TY  - JOUR
AU  - Marmi, S.
AU  - Moussa, P.
AU  - Yoccoz, J.-C.
TI  - The cohomological equation for Roth-type interval exchange maps
JO  - Journal of the American Mathematical Society
PY  - 2005
SP  - 823
EP  - 872
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00490-X/
DO  - 10.1090/S0894-0347-05-00490-X
ID  - 10_1090_S0894_0347_05_00490_X
ER  - 
%0 Journal Article
%A Marmi, S.
%A Moussa, P.
%A Yoccoz, J.-C.
%T The cohomological equation for Roth-type interval exchange maps
%J Journal of the American Mathematical Society
%D 2005
%P 823-872
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00490-X/
%R 10.1090/S0894-0347-05-00490-X
%F 10_1090_S0894_0347_05_00490_X
Marmi, S.; Moussa, P.; Yoccoz, J.-C. The cohomological equation for Roth-type interval exchange maps. Journal of the American Mathematical Society, Tome 18 (2005) no. 4, pp. 823-872. doi: 10.1090/S0894-0347-05-00490-X

[1] Arnoux, Pierre Ergodicité générique des billards polygonaux (d’après Kerckhoff, Masur, Smillie) Astérisque 1988

[2] Boshernitzan, Michael A condition for minimal interval exchange maps to be uniquely ergodic Duke Math. J. 1985 723 752

[3] Cheung, Yitwah Hausdorff dimension of the set of nonergodic directions Ann. of Math. (2) 2003 661 678

[4] Coffey, John Some remarks concerning an example of a minimal, non-uniquely ergodic interval exchange transformation Math. Z. 1988 577 580

[5] Travaux de Thurston sur les surfaces 1979 284

[6] Forni, Giovanni Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus Ann. of Math. (2) 1997 295 344

[7] Forni, Giovanni Deviation of ergodic averages for area-preserving flows on surfaces of higher genus Ann. of Math. (2) 2002 1 103

[8] Gottschalk, Walter Helbig, Hedlund, Gustav Arnold Topological dynamics 1955

[9] Katok, Anatole, Hasselblatt, Boris Introduction to the modern theory of dynamical systems 1995

[10] Katok, A. B., Stepin, A. M. Approximations in ergodic theory Uspehi Mat. Nauk 1967 81 106

[11] Keane, Michael Interval exchange transformations Math. Z. 1975 25 31

[12] Keane, Michael Non-ergodic interval exchange transformations Israel J. Math. 1977 188 196

[13] Kerckhoff, S. P. Simplicial systems for interval exchange maps and measured foliations Ergodic Theory Dynam. Systems 1985 257 271

[14] Kerckhoff, Steven, Masur, Howard, Smillie, John Ergodicity of billiard flows and quadratic differentials Ann. of Math. (2) 1986 293 311

[15] Keynes, Harvey B., Newton, Dan A “minimal”, non-uniquely ergodic interval exchange transformation Math. Z. 1976 101 105

[16] Keane, Michael S., Rauzy, Gã©Rard Stricte ergodicité des échanges d’intervalles Math. Z. 1980 203 212

[17] Kontsevich, Maxim, Zorich, Anton Connected components of the moduli spaces of Abelian differentials with prescribed singularities Invent. Math. 2003 631 678

[18] Masur, Howard Interval exchange transformations and measured foliations Ann. of Math. (2) 1982 169 200

[19] Marmi, Stefano, Moussa, Pierre, Yoccoz, Jean-Christophe On the cohomological equation for interval exchange maps C. R. Math. Acad. Sci. Paris 2003 941 948

[20] Masur, Howard, Smillie, John Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms Comment. Math. Helv. 1993 289 307

[21] Rauzy, Gã©Rard Échanges d’intervalles et transformations induites Acta Arith. 1979 315 328

[22] Rees, Mary An alternative approach to the ergodic theory of measured foliations on surfaces Ergodic Theory Dynam. Systems 1981

[23] Tabachnikov, Serge Billiards Panor. Synth. 1995

[24] Veech, William A. Interval exchange transformations J. Analyse Math. 1978 222 272

[25] Veech, William A. Projective Swiss cheeses and uniquely ergodic interval exchange transformations 1981 113 193

[26] Veech, William A. The metric theory of interval exchange transformations. I. Generic spectral properties Amer. J. Math. 1984 1331 1359

[27] Veech, William A. The metric theory of interval exchange transformations. I. Generic spectral properties Amer. J. Math. 1984 1331 1359

[28] Veech, William A. The metric theory of interval exchange transformations. I. Generic spectral properties Amer. J. Math. 1984 1331 1359

[29] Veech, William A. The Teichmüller geodesic flow Ann. of Math. (2) 1986 441 530

[30] Veech, William A. Moduli spaces of quadratic differentials J. Analyse Math. 1990 117 171

[31] Zorich, Anton Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents Ann. Inst. Fourier (Grenoble) 1996 325 370

[32] Zorich, Anton Deviation for interval exchange transformations Ergodic Theory Dynam. Systems 1997 1477 1499

[33] Zorich, Anton On hyperplane sections of periodic surfaces 1997 173 189

[34] Zorich, Anton How do the leaves of a closed 1-form wind around a surface? 1999 135 178

Cité par Sources :