Marmi, S.  1 ; Moussa, P.  2 ; Yoccoz, J.-C.  3
@article{10_1090_S0894_0347_05_00490_X,
author = {Marmi, S. and Moussa, P. and Yoccoz, J.-C.},
title = {The cohomological equation for {Roth-type} interval exchange maps},
journal = {Journal of the American Mathematical Society},
pages = {823--872},
year = {2005},
volume = {18},
number = {4},
doi = {10.1090/S0894-0347-05-00490-X},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00490-X/}
}
TY - JOUR AU - Marmi, S. AU - Moussa, P. AU - Yoccoz, J.-C. TI - The cohomological equation for Roth-type interval exchange maps JO - Journal of the American Mathematical Society PY - 2005 SP - 823 EP - 872 VL - 18 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00490-X/ DO - 10.1090/S0894-0347-05-00490-X ID - 10_1090_S0894_0347_05_00490_X ER -
%0 Journal Article %A Marmi, S. %A Moussa, P. %A Yoccoz, J.-C. %T The cohomological equation for Roth-type interval exchange maps %J Journal of the American Mathematical Society %D 2005 %P 823-872 %V 18 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00490-X/ %R 10.1090/S0894-0347-05-00490-X %F 10_1090_S0894_0347_05_00490_X
Marmi, S.; Moussa, P.; Yoccoz, J.-C. The cohomological equation for Roth-type interval exchange maps. Journal of the American Mathematical Society, Tome 18 (2005) no. 4, pp. 823-872. doi: 10.1090/S0894-0347-05-00490-X
[1] Ergodicité générique des billards polygonaux (d’après Kerckhoff, Masur, Smillie) Astérisque 1988
[2] A condition for minimal interval exchange maps to be uniquely ergodic Duke Math. J. 1985 723 752
[3] Hausdorff dimension of the set of nonergodic directions Ann. of Math. (2) 2003 661 678
[4] Some remarks concerning an example of a minimal, non-uniquely ergodic interval exchange transformation Math. Z. 1988 577 580
[5] Travaux de Thurston sur les surfaces 1979 284
[6] Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus Ann. of Math. (2) 1997 295 344
[7] Deviation of ergodic averages for area-preserving flows on surfaces of higher genus Ann. of Math. (2) 2002 1 103
[8] , Topological dynamics 1955
[9] , Introduction to the modern theory of dynamical systems 1995
[10] , Approximations in ergodic theory Uspehi Mat. Nauk 1967 81 106
[11] Interval exchange transformations Math. Z. 1975 25 31
[12] Non-ergodic interval exchange transformations Israel J. Math. 1977 188 196
[13] Simplicial systems for interval exchange maps and measured foliations Ergodic Theory Dynam. Systems 1985 257 271
[14] , , Ergodicity of billiard flows and quadratic differentials Ann. of Math. (2) 1986 293 311
[15] , A “minimal”, non-uniquely ergodic interval exchange transformation Math. Z. 1976 101 105
[16] , Stricte ergodicité des échanges d’intervalles Math. Z. 1980 203 212
[17] , Connected components of the moduli spaces of Abelian differentials with prescribed singularities Invent. Math. 2003 631 678
[18] Interval exchange transformations and measured foliations Ann. of Math. (2) 1982 169 200
[19] , , On the cohomological equation for interval exchange maps C. R. Math. Acad. Sci. Paris 2003 941 948
[20] , Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms Comment. Math. Helv. 1993 289 307
[21] Échanges d’intervalles et transformations induites Acta Arith. 1979 315 328
[22] An alternative approach to the ergodic theory of measured foliations on surfaces Ergodic Theory Dynam. Systems 1981
[23] Billiards Panor. Synth. 1995
[24] Interval exchange transformations J. Analyse Math. 1978 222 272
[25] Projective Swiss cheeses and uniquely ergodic interval exchange transformations 1981 113 193
[26] The metric theory of interval exchange transformations. I. Generic spectral properties Amer. J. Math. 1984 1331 1359
[27] The metric theory of interval exchange transformations. I. Generic spectral properties Amer. J. Math. 1984 1331 1359
[28] The metric theory of interval exchange transformations. I. Generic spectral properties Amer. J. Math. 1984 1331 1359
[29] The Teichmüller geodesic flow Ann. of Math. (2) 1986 441 530
[30] Moduli spaces of quadratic differentials J. Analyse Math. 1990 117 171
[31] Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents Ann. Inst. Fourier (Grenoble) 1996 325 370
[32] Deviation for interval exchange transformations Ergodic Theory Dynam. Systems 1997 1477 1499
[33] On hyperplane sections of periodic surfaces 1997 173 189
[34] How do the leaves of a closed 1-form wind around a surface? 1999 135 178
Cité par Sources :