Homological methods for hypergeometric families
Journal of the American Mathematical Society, Tome 18 (2005) no. 4, pp. 919-941

Voir la notice de l'article provenant de la source American Mathematical Society

We analyze the behavior of the holonomic rank in families of holonomic systems over complex algebraic varieties by providing homological criteria for rank-jumps in this general setting. Then we investigate rank-jump behavior for hypergeometric systems $H_A(\beta )$ arising from a $d \times n$ integer matrix $A$ and a parameter $\beta \in \mathbb {C}^d$. To do so we introduce an Euler–Koszul functor for hypergeometric families over $\mathbb {C}^d$, whose homology generalizes the notion of a hypergeometric system, and we prove a homology isomorphism with our general homological construction above. We show that a parameter $\beta \in \mathbb {C}^d$ is rank-jumping for $H_A(\beta )$ if and only if $\beta$ lies in the Zariski closure of the set of $\mathbb {C}^d$-graded degrees $\alpha$ where the local cohomology $\bigoplus _{i d} H^i_\mathfrak m(\mathbb {C}[\mathbb {N} A])_\alpha$ of the semigroup ring $\mathbb {C}[\mathbb {N} A]$ supported at its maximal graded ideal $\mathfrak m$ is nonzero. Consequently, $H_A(\beta )$ has no rank-jumps over $\mathbb {C}^d$ if and only if $\mathbb {C}[\mathbb {N} A]$ is Cohen–Macaulay of dimension $d$.
DOI : 10.1090/S0894-0347-05-00488-1

Matusevich, Laura 1, 2 ; Miller, Ezra 3 ; Walther, Uli 4

1 Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
2 Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
3 School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
4 Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
@article{10_1090_S0894_0347_05_00488_1,
     author = {Matusevich, Laura and Miller, Ezra and Walther, Uli},
     title = {Homological methods for hypergeometric families},
     journal = {Journal of the American Mathematical Society},
     pages = {919--941},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00488-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00488-1/}
}
TY  - JOUR
AU  - Matusevich, Laura
AU  - Miller, Ezra
AU  - Walther, Uli
TI  - Homological methods for hypergeometric families
JO  - Journal of the American Mathematical Society
PY  - 2005
SP  - 919
EP  - 941
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00488-1/
DO  - 10.1090/S0894-0347-05-00488-1
ID  - 10_1090_S0894_0347_05_00488_1
ER  - 
%0 Journal Article
%A Matusevich, Laura
%A Miller, Ezra
%A Walther, Uli
%T Homological methods for hypergeometric families
%J Journal of the American Mathematical Society
%D 2005
%P 919-941
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00488-1/
%R 10.1090/S0894-0347-05-00488-1
%F 10_1090_S0894_0347_05_00488_1
Matusevich, Laura; Miller, Ezra; Walther, Uli. Homological methods for hypergeometric families. Journal of the American Mathematical Society, Tome 18 (2005) no. 4, pp. 919-941. doi: 10.1090/S0894-0347-05-00488-1

[1] Adolphson, Alan Hypergeometric functions and rings generated by monomials Duke Math. J. 1994 269 290

[2] Adolphson, Alan Higher solutions of hypergeometric systems and Dwork cohomology Rend. Sem. Mat. Univ. Padova 1999 179 190

[3] Bruns, Winfried, Herzog, Jã¼Rgen Cohen-Macaulay rings 1993

[4] Bjã¶Rk, J.-E. Rings of differential operators 1979

[5] Cattani, Eduardo, D’Andrea, Carlos, Dickenstein, Alicia The 𝒜-hypergeometric system associated with a monomial curve Duke Math. J. 1999 179 207

[6] Cattani, Eduardo, Dickenstein, Alicia, Sturmfels, Bernd Rational hypergeometric functions Compositio Math. 2001 217 239

[7] Cox, David A., Katz, Sheldon Mirror symmetry and algebraic geometry 1999

[8] Eisenbud, David Commutative algebra 1995

[9] Gel′Fand, I. M., Graev, M. I., Zelevinskiä­, A. V. Holonomic systems of equations and series of hypergeometric type Dokl. Akad. Nauk SSSR 1987 14 19

[10] Gel′Fand, I. M., Zelevinskiä­, A. V., Kapranov, M. M. Hypergeometric functions and toric varieties Funktsional. Anal. i Prilozhen. 1989 12 26

[11] Hartshorne, Robin Algebraic geometry 1977

[12] Matusevich, Laura Felicia Rank jumps in codimension 2 𝐴-hypergeometric systems J. Symbolic Comput. 2001 619 641

[13] Matusevich, Laura Felicia Exceptional parameters for generic 𝒜-hypergeometric systems Int. Math. Res. Not. 2003 1225 1248

[14] Miller, Ezra Graded Greenlees-May duality and the Čech hull 2002 233 253

[15] Miller, Ezra, Sturmfels, Bernd Combinatorial commutative algebra 2005

[16] Saito, Mutsumi Isomorphism classes of 𝐴-hypergeometric systems Compositio Math. 2001 323 338

[17] Saito, Mutsumi Logarithm-free 𝐴-hypergeometric series Duke Math. J. 2002 53 73

[18] Saito, Mutsumi, Sturmfels, Bernd, Takayama, Nobuki Gröbner deformations of hypergeometric differential equations 2000

[19] Sturmfels, Bernd, Takayama, Nobuki Gröbner bases and hypergeometric functions 1998 246 258

Cité par Sources :