Voir la notice de l'article provenant de la source American Mathematical Society
Bushnell, Colin 1 ; Henniart, Guy 2
@article{10_1090_S0894_0347_05_00487_X,
     author = {Bushnell, Colin and Henniart, Guy},
     title = {The essentially tame local {Langlands} correspondence, {I}},
     journal = {Journal of the American Mathematical Society},
     pages = {685--710},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00487-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00487-X/}
}
                      
                      
                    TY - JOUR AU - Bushnell, Colin AU - Henniart, Guy TI - The essentially tame local Langlands correspondence, I JO - Journal of the American Mathematical Society PY - 2005 SP - 685 EP - 710 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00487-X/ DO - 10.1090/S0894-0347-05-00487-X ID - 10_1090_S0894_0347_05_00487_X ER -
%0 Journal Article %A Bushnell, Colin %A Henniart, Guy %T The essentially tame local Langlands correspondence, I %J Journal of the American Mathematical Society %D 2005 %P 685-710 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00487-X/ %R 10.1090/S0894-0347-05-00487-X %F 10_1090_S0894_0347_05_00487_X
Bushnell, Colin; Henniart, Guy. The essentially tame local Langlands correspondence, I. Journal of the American Mathematical Society, Tome 18 (2005) no. 3, pp. 685-710. doi: 10.1090/S0894-0347-05-00487-X
[1] , Simple algebras, base change, and the advanced theory of the trace formula 1989
[2] , Gauss sums and ð-adic division algebras 1983
[3] , Local tame lifting for ðºð¿(ð). I. Simple characters Inst. Hautes Ãtudes Sci. Publ. Math. 1996 105 233
[4] , Local tame lifting for ðºð¿(ð). II. Wildly ramified supercuspidals Astérisque 1999
[5] , Davenport-Hasse relations and an explicit Langlands correspondence J. Reine Angew. Math. 2000 171 199
[6] , Local tame lifting for ðºð¿(ð). IV. Simple characters and base change Proc. London Math. Soc. (3) 2003 337 362
[7] , , Correspondance de Langlands locale pour ðºð¿_{ð} et conducteurs de paires Ann. Sci. Ãcole Norm. Sup. (4) 1998 537 560
[8] , The admissible dual of ðºð¿(ð) via compact open subgroups 1993
[9] , The admissible dual of ðð¿(ð). II Proc. London Math. Soc. (3) 1994 317 379
[10] , Computing characters of tamely ramified ð-adic division algebras Pacific J. Math. 1977 461 477
[11] Correspondences of characters for relatively prime operator groups Canadian J. Math. 1968 1465 1488
[12] The characters of the finite general linear groups Trans. Amer. Math. Soc. 1955 402 447
[13] , The geometry and cohomology of some simple Shimura varieties 2001
[14] Une preuve simple des conjectures de Langlands pour ðºð¿(ð) sur un corps ð-adique Invent. Math. 2000 439 455
[15] , Automorphic induction for ðºð¿(ð) (over local non-Archimedean fields) Duke Math. J. 1995 131 192
[16] Tamely ramified supercuspidal representations of ðºð_{ð} Pacific J. Math. 1977 437 460
[17] , , Rankin-Selberg convolutions Amer. J. Math. 1983 367 464
[18] , Zur Korrespondenz von Darstellungen der Galoisgruppen und der zentralen Divisionsalgebren über lokalen Körpern (der zahme Fall) Math. Nachr. 1980 83 119
[19] , , ð-elliptic sheaves and the Langlands correspondence Invent. Math. 1993 217 338
[20] Sur la correspondance de Langlands-Kazhdan J. Math. Pures Appl. (9) 1990 175 226
[21] Local constants and the tame Langlands correspondence Amer. J. Math. 1986 863 930
[22] Representations of tamely ramified ð-adic division and matrix algebras J. Number Theory 1991 58 105
[23] Representations of ðºð¿(ð) and division algebras over a ð-adic field Duke Math. J. 1983 161 196
[24] Corps locaux 1962 243
[25] Fourier transforms of intertwining operators and Plancherel measures for ðºð¿(ð) Amer. J. Math. 1984 67 111
Cité par Sources :
