Estimates for the extinction time for the Ricci flow on certain 3-manifolds and a question of Perelman
Journal of the American Mathematical Society, Tome 18 (2005) no. 3, pp. 561-569

Voir la notice de l'article provenant de la source American Mathematical Society

We show that the Ricci flow becomes extinct in finite time on any Riemannian $3$-manifold without aspherical summands.
DOI : 10.1090/S0894-0347-05-00486-8

Colding, Tobias 1 ; Minicozzi, William, II 2

1 Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012
2 Department of Mathematics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218
@article{10_1090_S0894_0347_05_00486_8,
     author = {Colding, Tobias and Minicozzi, William, II},
     title = {Estimates for the extinction time for the {Ricci} flow on certain 3-manifolds and a question of {Perelman}},
     journal = {Journal of the American Mathematical Society},
     pages = {561--569},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00486-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00486-8/}
}
TY  - JOUR
AU  - Colding, Tobias
AU  - Minicozzi, William, II
TI  - Estimates for the extinction time for the Ricci flow on certain 3-manifolds and a question of Perelman
JO  - Journal of the American Mathematical Society
PY  - 2005
SP  - 561
EP  - 569
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00486-8/
DO  - 10.1090/S0894-0347-05-00486-8
ID  - 10_1090_S0894_0347_05_00486_8
ER  - 
%0 Journal Article
%A Colding, Tobias
%A Minicozzi, William, II
%T Estimates for the extinction time for the Ricci flow on certain 3-manifolds and a question of Perelman
%J Journal of the American Mathematical Society
%D 2005
%P 561-569
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00486-8/
%R 10.1090/S0894-0347-05-00486-8
%F 10_1090_S0894_0347_05_00486_8
Colding, Tobias; Minicozzi, William, II. Estimates for the extinction time for the Ricci flow on certain 3-manifolds and a question of Perelman. Journal of the American Mathematical Society, Tome 18 (2005) no. 3, pp. 561-569. doi: 10.1090/S0894-0347-05-00486-8

[1] Christodoulou, D., Yau, S.-T. Some remarks on the quasi-local mass 1988 9 14

[2] Colding, Tobias H., De Lellis, Camillo The min-max construction of minimal surfaces 2003 75 107

[3] Colding, Tobias H., Minicozzi, William P., Ii Minimal surfaces 1999

[4] Hamilton, Richard S. The formation of singularities in the Ricci flow 1995 7 136

[5] Jost, Jã¼Rgen Two-dimensional geometric variational problems 1991

[6] Meeks, William, Iii, Simon, Leon, Yau, Shing Tung Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature Ann. of Math. (2) 1982 621 659

[7] Micallef, Mario J., Moore, John Douglas Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes Ann. of Math. (2) 1988 199 227

[8] Schoen, R., Yau, S.-T. Lectures on differential geometry 1994

[9] Schoen, R., Yau, S. T. Lectures on harmonic maps 1997

Cité par Sources :