Haglund, J.  1 ; Haiman, M.  2 ; Loehr, N.  1 , 3
@article{10_1090_S0894_0347_05_00485_6,
author = {Haglund, J. and Haiman, M. and Loehr, N.},
title = {A combinatorial formula for {Macdonald} polynomials},
journal = {Journal of the American Mathematical Society},
pages = {735--761},
year = {2005},
volume = {18},
number = {3},
doi = {10.1090/S0894-0347-05-00485-6},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00485-6/}
}
TY - JOUR AU - Haglund, J. AU - Haiman, M. AU - Loehr, N. TI - A combinatorial formula for Macdonald polynomials JO - Journal of the American Mathematical Society PY - 2005 SP - 735 EP - 761 VL - 18 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00485-6/ DO - 10.1090/S0894-0347-05-00485-6 ID - 10_1090_S0894_0347_05_00485_6 ER -
%0 Journal Article %A Haglund, J. %A Haiman, M. %A Loehr, N. %T A combinatorial formula for Macdonald polynomials %J Journal of the American Mathematical Society %D 2005 %P 735-761 %V 18 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00485-6/ %R 10.1090/S0894-0347-05-00485-6 %F 10_1090_S0894_0347_05_00485_6
Haglund, J.; Haiman, M.; Loehr, N. A combinatorial formula for Macdonald polynomials. Journal of the American Mathematical Society, Tome 18 (2005) no. 3, pp. 735-761. doi: 10.1090/S0894-0347-05-00485-6
[1] Subgroup lattices and symmetric functions Mem. Amer. Math. Soc. 1994
[2] , Splitting the square of a Schur function into its symmetric and antisymmetric parts J. Algebraic Combin. 1995 201 231
[3] Statistics for special 𝑞,𝑡-Kostka polynomials Proc. Amer. Math. Soc. 1995 2961 2969
[4] , Affine Hecke algebras and raising operators for Macdonald polynomials Duke Math. J. 1998 1 39
[5] , Affine Hecke algebras and raising operators for Macdonald polynomials Duke Math. J. 1998 1 39
[6] , Polynomiality of the 𝑞,𝑡-Kostka revisited 2001 473 491
[7] A combinatorial model for the Macdonald polynomials Proc. Natl. Acad. Sci. USA 2004 16127 16131
[8] , , , , A combinatorial formula for the character of the diagonal coinvariants Duke Math. J. 2005 195 232
[9] Macdonald polynomials and geometry 1999 207 254
[10] Hilbert schemes, polygraphs and the Macdonald positivity conjecture J. Amer. Math. Soc. 2001 941 1006
[11] Notes on Macdonald polynomials and the geometry of Hilbert schemes 2002 1 64
[12] On crystal bases of the 𝑄-analogue of universal enveloping algebras Duke Math. J. 1991 465 516
[13] , , Decomposition of 𝑞-deformed Fock spaces Selecta Math. (N.S.) 1995 787 805
[14] , Affine Hecke algebras and raising operators for Macdonald polynomials Duke Math. J. 1998 1 39
[15] , Affine Hecke algebras and raising operators for Macdonald polynomials Duke Math. J. 1998 1 39
[16] , A recursion and a combinatorial formula for Jack polynomials Invent. Math. 1997 9 22
[17] , Tableaux statistics for two part Macdonald polynomials 2003 61 84
[18] , Rodrigues formulas for the Macdonald polynomials Adv. Math. 1997 261 279
[19] , , Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties J. Math. Phys. 1997 1041 1068
[20] , Sur une conjecture de H. O. Foulkes C. R. Acad. Sci. Paris Sér. A-B 1978
[21] , Croissance des polynômes de Foulkes-Green C. R. Acad. Sci. Paris Sér. A-B 1979
[22] , Le monoïde plaxique 1981 129 156
[23] , Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials 2000 155 220
[24] Symmetric functions and Hall polynomials 1995
[25] Symmetric functions, Schubert polynomials and degeneracy loci 2001
[26] , Affine Hecke algebras and raising operators for Macdonald polynomials Duke Math. J. 1998 1 39
[27] La correspondance de Robinson 1977 59 113
[28] Enumerative combinatorics. Vol. 2 1999
[29] Some bijective correspondences involving domino tableaux Electron. J. Combin. 2000
[30] Positivity for special cases of (𝑞,𝑡)-Kostka coefficients and standard tableaux statistics Electron. J. Combin. 1999
Cité par Sources :