Well-posedness of the water-waves equations
Journal of the American Mathematical Society, Tome 18 (2005) no. 3, pp. 605-654

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that the water-waves equations (i.e., the inviscid Euler equations with free surface) are well-posed locally in time in Sobolev spaces for a fluid layer of finite depth, either in dimension $2$ or $3$ under a stability condition on the linearized equations. This condition appears naturally as the Lévy condition one has to impose on these nonstricly hyperbolic equations to insure well-posedness; it coincides with the generalized Taylor criterion exhibited in earlier works. Similarly to what happens in infinite depth, we show that this condition always holds for flat bottoms. For uneven bottoms, we prove that it is satisfied provided that a smallness condition on the second fundamental form of the bottom surface evaluated on the initial velocity field is satisfied. We work here with a formulation of the water-waves equations in terms of the velocity potential at the free surface and of the elevation of the free surface, and in Eulerian variables. This formulation involves a Dirichlet-Neumann operator which we study in detail: sharp tame estimates, symbol, commutators and shape derivatives. This allows us to give a tame estimate on the linearized water-waves equations and to conclude with a Nash-Moser iterative scheme.
DOI : 10.1090/S0894-0347-05-00484-4

Lannes, David 1

1 MAB, Université Bordeaux 1 et CNRS UMR 5466, 351 Cours de la Libération, 33405 Talence Cedex, France
@article{10_1090_S0894_0347_05_00484_4,
     author = {Lannes, David},
     title = {Well-posedness of the water-waves equations},
     journal = {Journal of the American Mathematical Society},
     pages = {605--654},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00484-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00484-4/}
}
TY  - JOUR
AU  - Lannes, David
TI  - Well-posedness of the water-waves equations
JO  - Journal of the American Mathematical Society
PY  - 2005
SP  - 605
EP  - 654
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00484-4/
DO  - 10.1090/S0894-0347-05-00484-4
ID  - 10_1090_S0894_0347_05_00484_4
ER  - 
%0 Journal Article
%A Lannes, David
%T Well-posedness of the water-waves equations
%J Journal of the American Mathematical Society
%D 2005
%P 605-654
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00484-4/
%R 10.1090/S0894-0347-05-00484-4
%F 10_1090_S0894_0347_05_00484_4
Lannes, David. Well-posedness of the water-waves equations. Journal of the American Mathematical Society, Tome 18 (2005) no. 3, pp. 605-654. doi: 10.1090/S0894-0347-05-00484-4

[1] Alinhac, Serge, Gã©Rard, Patrick Opérateurs pseudo-différentiels et théorème de Nash-Moser 1991 190

[2] Beale, J. Thomas, Hou, Thomas Y., Lowengrub, John S. Growth rates for the linearized motion of fluid interfaces away from equilibrium Comm. Pure Appl. Math. 1993 1269 1301

[3] Birkhoff, Garrett Helmholtz and Taylor instability 1962 55 76

[4] Carbou, Gilles Penalization method for viscous incompressible flow around a porous thin layer Nonlinear Anal. Real World Appl. 2004 815 855

[5] Christ, Michael, Journã©, Jean-Lin Polynomial growth estimates for multilinear singular integral operators Acta Math. 1987 51 80

[6] Coifman, R. R., David, G., Meyer, Y. La solution des conjecture de Calderón Adv. in Math. 1983 144 148

[7] Coifman, R. R., Mcintosh, A., Meyer, Y. L’intégrale de Cauchy définit un opérateur borné sur 𝐿² pour les courbes lipschitziennes Ann. of Math. (2) 1982 361 387

[8] Coifman, R. R., Meyer, Yves Nonlinear harmonic analysis and analytic dependence 1985 71 78

[9] Craig, Walter An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits Comm. Partial Differential Equations 1985 787 1003

[10] Craig, Walter Nonstrictly hyperbolic nonlinear systems Math. Ann. 1987 213 232

[11] Craig, Walter, Nicholls, David P. Traveling gravity water waves in two and three dimensions Eur. J. Mech. B Fluids 2002 615 641

[12] Craig, Walter, Schanz, Ulrich, Sulem, Catherine The modulational regime of three-dimensional water waves and the Davey-Stewartson system Ann. Inst. H. Poincaré C Anal. Non Linéaire 1997 615 667

[13] Craig, W., Sulem, C., Sulem, P.-L. Nonlinear modulation of gravity waves: a rigorous approach Nonlinearity 1992 497 522

[14] Dambrine, Marc, Pierre, Michel About stability of equilibrium shapes M2AN Math. Model. Numer. Anal. 2000 811 834

[15] Flaschka, Hermann, Strang, Gilbert The correctness of the Cauchy problem Advances in Math. 1971

[16] Garabedian, P. R., Schiffer, M. Convexity of domain functionals J. Analyse Math. 1953 281 368

[17] Gilbert, John E., Murray, Margaret A. M. Clifford algebras and Dirac operators in harmonic analysis 1991

[18] Grisvard, P. Elliptic problems in nonsmooth domains 1985

[19] Hamilton, Richard S. The inverse function theorem of Nash and Moser Bull. Amer. Math. Soc. (N.S.) 1982 65 222

[20] Hou, Thomas Y., Teng, Zhen-Huan, Zhang, Pingwen Well-posedness of linearized motion for 3-D water waves far from equilibrium Comm. Partial Differential Equations 1996 1551 1585

[21] Hwang, I. L. The 𝐿²-boundedness of pseudodifferential operators Trans. Amer. Math. Soc. 1987 55 76

[22] Kato, Tosio, Ponce, Gustavo Commutator estimates and the Euler and Navier-Stokes equations Comm. Pure Appl. Math. 1988 891 907

[23] Lions, J.-L., Magenes, E. Problèmes aux limites non homogènes et applications. Vol. 1 1968

[24] Nalimov, V. I. The Cauchy-Poisson problem Dinamika Splošn. Sredy 1974

[25] Nicholls, David P., Reitich, Fernando A new approach to analyticity of Dirichlet-Neumann operators Proc. Roy. Soc. Edinburgh Sect. A 2001 1411 1433

[26] Ovsjannikov, L. V. Cauchy problem in a scale of Banach spaces and its application to the shallow water theory justification 1976 426 437

[27] Sablã©-Tougeron, Monique Régularité microlocale pour des problèmes aux limites non linéaires Ann. Inst. Fourier (Grenoble) 1986 39 82

[28] Saint Raymond, Xavier A simple Nash-Moser implicit function theorem Enseign. Math. (2) 1989 217 226

[29] Schneider, Guido, Wayne, C. Eugene The long-wave limit for the water wave problem. I. The case of zero surface tension Comm. Pure Appl. Math. 2000 1475 1535

[30] Taylor, Geoffrey The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I Proc. Roy. Soc. London Ser. A 1950 192 196

[31] Taylor, Michael E. Partial differential equations. II 1996

[32] Trã¨Ves, Franã§Ois Introduction to pseudodifferential and Fourier integral operators. Vol. 1 1980

[33] Wu, Sijue Well-posedness in Sobolev spaces of the full water wave problem in 2-D Invent. Math. 1997 39 72

[34] Wu, Sijue Well-posedness in Sobolev spaces of the full water wave problem in 3-D J. Amer. Math. Soc. 1999 445 495

[35] Yosihara, Hideaki Gravity waves on the free surface of an incompressible perfect fluid of finite depth Publ. Res. Inst. Math. Sci. 1982 49 96

Cité par Sources :