Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_05_00484_4,
     author = {Lannes, David},
     title = {Well-posedness of the water-waves equations},
     journal = {Journal of the American Mathematical Society},
     pages = {605--654},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00484-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00484-4/}
}
                      
                      
                    TY - JOUR AU - Lannes, David TI - Well-posedness of the water-waves equations JO - Journal of the American Mathematical Society PY - 2005 SP - 605 EP - 654 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00484-4/ DO - 10.1090/S0894-0347-05-00484-4 ID - 10_1090_S0894_0347_05_00484_4 ER -
%0 Journal Article %A Lannes, David %T Well-posedness of the water-waves equations %J Journal of the American Mathematical Society %D 2005 %P 605-654 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00484-4/ %R 10.1090/S0894-0347-05-00484-4 %F 10_1090_S0894_0347_05_00484_4
Lannes, David. Well-posedness of the water-waves equations. Journal of the American Mathematical Society, Tome 18 (2005) no. 3, pp. 605-654. doi: 10.1090/S0894-0347-05-00484-4
[1] , Opérateurs pseudo-différentiels et théorème de Nash-Moser 1991 190
[2] , , Growth rates for the linearized motion of fluid interfaces away from equilibrium Comm. Pure Appl. Math. 1993 1269 1301
[3] Helmholtz and Taylor instability 1962 55 76
[4] Penalization method for viscous incompressible flow around a porous thin layer Nonlinear Anal. Real World Appl. 2004 815 855
[5] , Polynomial growth estimates for multilinear singular integral operators Acta Math. 1987 51 80
[6] , , La solution des conjecture de Calderón Adv. in Math. 1983 144 148
[7] , , Lâintégrale de Cauchy définit un opérateur borné sur ð¿Â² pour les courbes lipschitziennes Ann. of Math. (2) 1982 361 387
[8] , Nonlinear harmonic analysis and analytic dependence 1985 71 78
[9] An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits Comm. Partial Differential Equations 1985 787 1003
[10] Nonstrictly hyperbolic nonlinear systems Math. Ann. 1987 213 232
[11] , Traveling gravity water waves in two and three dimensions Eur. J. Mech. B Fluids 2002 615 641
[12] , , The modulational regime of three-dimensional water waves and the Davey-Stewartson system Ann. Inst. H. Poincaré C Anal. Non Linéaire 1997 615 667
[13] , , Nonlinear modulation of gravity waves: a rigorous approach Nonlinearity 1992 497 522
[14] , About stability of equilibrium shapes M2AN Math. Model. Numer. Anal. 2000 811 834
[15] , The correctness of the Cauchy problem Advances in Math. 1971
[16] , Convexity of domain functionals J. Analyse Math. 1953 281 368
[17] , Clifford algebras and Dirac operators in harmonic analysis 1991
[18] Elliptic problems in nonsmooth domains 1985
[19] The inverse function theorem of Nash and Moser Bull. Amer. Math. Soc. (N.S.) 1982 65 222
[20] , , Well-posedness of linearized motion for 3-D water waves far from equilibrium Comm. Partial Differential Equations 1996 1551 1585
[21] The ð¿Â²-boundedness of pseudodifferential operators Trans. Amer. Math. Soc. 1987 55 76
[22] , Commutator estimates and the Euler and Navier-Stokes equations Comm. Pure Appl. Math. 1988 891 907
[23] , Problèmes aux limites non homogènes et applications. Vol. 1 1968
[24] The Cauchy-Poisson problem Dinamika Splošn. Sredy 1974
[25] , A new approach to analyticity of Dirichlet-Neumann operators Proc. Roy. Soc. Edinburgh Sect. A 2001 1411 1433
[26] Cauchy problem in a scale of Banach spaces and its application to the shallow water theory justification 1976 426 437
[27] Régularité microlocale pour des problèmes aux limites non linéaires Ann. Inst. Fourier (Grenoble) 1986 39 82
[28] A simple Nash-Moser implicit function theorem Enseign. Math. (2) 1989 217 226
[29] , The long-wave limit for the water wave problem. I. The case of zero surface tension Comm. Pure Appl. Math. 2000 1475 1535
[30] The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I Proc. Roy. Soc. London Ser. A 1950 192 196
[31] Partial differential equations. II 1996
[32] Introduction to pseudodifferential and Fourier integral operators. Vol. 1 1980
[33] Well-posedness in Sobolev spaces of the full water wave problem in 2-D Invent. Math. 1997 39 72
[34] Well-posedness in Sobolev spaces of the full water wave problem in 3-D J. Amer. Math. Soc. 1999 445 495
[35] Gravity waves on the free surface of an incompressible perfect fluid of finite depth Publ. Res. Inst. Math. Sci. 1982 49 96
Cité par Sources :
