Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_05_00483_2,
     author = {McMullen, Curtis},
     title = {Minkowski\^as conjecture, well-rounded lattices and topological dimension},
     journal = {Journal of the American Mathematical Society},
     pages = {711--734},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00483-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00483-2/}
}
                      
                      
                    TY - JOUR AU - McMullen, Curtis TI - Minkowskiâs conjecture, well-rounded lattices and topological dimension JO - Journal of the American Mathematical Society PY - 2005 SP - 711 EP - 734 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00483-2/ DO - 10.1090/S0894-0347-05-00483-2 ID - 10_1090_S0894_0347_05_00483_2 ER -
%0 Journal Article %A McMullen, Curtis %T Minkowskiâs conjecture, well-rounded lattices and topological dimension %J Journal of the American Mathematical Society %D 2005 %P 711-734 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00483-2/ %R 10.1090/S0894-0347-05-00483-2 %F 10_1090_S0894_0347_05_00483_2
McMullen, Curtis. Minkowskiâs conjecture, well-rounded lattices and topological dimension. Journal of the American Mathematical Society, Tome 18 (2005) no. 3, pp. 711-734. doi: 10.1090/S0894-0347-05-00483-2
[1] Small-dimensional classifying spaces for arithmetic subgroups of general linear groups Duke Math. J. 1984 459 468
[2] , Cohomology at infinity and the well-rounded retract for general linear groups Duke Math. J. 1997 549 576
[3] , Minkowskiâs conjecture for ð J. Number Theory 1980 27 48
[4] Lattices and number fields 1999 69 84
[5] Ideal lattices 2002 168 184
[6] , On the inhomogeneous minimum of the product of ð linear forms Mathematika 1956 25 39
[7] , Number theory 1966
[8] , Differential forms in algebraic topology 1982
[9] , On the product of three homogeneous linear forms and the indefinite ternary quadratic forms Philos. Trans. Roy. Soc. London Ser. A 1955 73 96
[10] , Sphere packings, lattices and groups 1999
[11] On the product of four non-homogeneous linear forms Ann. of Math. (2) 1948 82 109
[12] , Foundations of algebraic topology 1952
[13] Volume and bounded cohomology Inst. Hautes Ãtudes Sci. Publ. Math. 1982
[14] , Geometry of numbers 1987
[15] , Dimension Theory 1941
[16] Diophantische Approximationen 1974
[17] , On sets invariant under the action of the diagonal group Ergodic Theory Dynam. Systems 2001 1481 1500
[18] Problems and conjectures in rigidity theory 2000 161 174
[19] Diophantische Approximationen. Eine Einführung in die Zahlentheorie 1957
[20] Finiteness of compact maximal flats of bounded volume Ergodic Theory Dynam. Systems 2004 217 225
[21] Introduction to ð¿Â² Betti numbers 1996 53 86
[22] Discrete subgroups of Lie groups 1972
[23] A new variant of the proof of the inhomogeneous Minkowski conjecture for ð Trudy Mat. Inst. Steklov. 1976
[24] The cohomology of ðð¿â(ð) Topology 1978 1 22
[25] , Closed orbits for actions of maximal tori on homogeneous spaces Duke Math. J. 2003 367 392
[26] The missing axiom of matroid theory is lost forever J. London Math. Soc. (2) 1978 403 408
[27] Covering six space with spheres J. Number Theory 1972 157 180
Cité par Sources :
