Minkowski’s conjecture, well-rounded lattices and topological dimension
Journal of the American Mathematical Society, Tome 18 (2005) no. 3, pp. 711-734

Voir la notice de l'article provenant de la source American Mathematical Society

Let $A \subset {\operatorname {SL}}_n({\mathbb R})$ be the diagonal subgroup, and identify ${\operatorname {SL}}_n({\mathbb R})/ {\operatorname {SL}}_n({\mathbb Z})$ with the space of unimodular lattices in ${\mathbb R}^n$. In this paper we show that the closure of any bounded orbit \begin{equation*} A \cdot L \subset {\operatorname {SL}}_n({\mathbb R})/{\operatorname {SL}}_n({\mathbb Z}) \end{equation*} meets the set of well-rounded lattices. This assertion implies Minkowski’s conjecture for $n=6$ and yields bounds for the density of algebraic integers in totally real sextic fields. The proof is based on the theory of topological dimension, as reflected in the combinatorics of open covers of ${\mathbb R}^n$ and $T^n$.
DOI : 10.1090/S0894-0347-05-00483-2

McMullen, Curtis 1

1 Department of Mathematics, Harvard University, 1 Oxford St, Cambridge, Massachusetts 02138-2901
@article{10_1090_S0894_0347_05_00483_2,
     author = {McMullen, Curtis},
     title = {Minkowski\^a€™s conjecture, well-rounded lattices and topological dimension},
     journal = {Journal of the American Mathematical Society},
     pages = {711--734},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00483-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00483-2/}
}
TY  - JOUR
AU  - McMullen, Curtis
TI  - Minkowski’s conjecture, well-rounded lattices and topological dimension
JO  - Journal of the American Mathematical Society
PY  - 2005
SP  - 711
EP  - 734
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00483-2/
DO  - 10.1090/S0894-0347-05-00483-2
ID  - 10_1090_S0894_0347_05_00483_2
ER  - 
%0 Journal Article
%A McMullen, Curtis
%T Minkowski’s conjecture, well-rounded lattices and topological dimension
%J Journal of the American Mathematical Society
%D 2005
%P 711-734
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00483-2/
%R 10.1090/S0894-0347-05-00483-2
%F 10_1090_S0894_0347_05_00483_2
McMullen, Curtis. Minkowski’s conjecture, well-rounded lattices and topological dimension. Journal of the American Mathematical Society, Tome 18 (2005) no. 3, pp. 711-734. doi: 10.1090/S0894-0347-05-00483-2

[1] Ash, Avner Small-dimensional classifying spaces for arithmetic subgroups of general linear groups Duke Math. J. 1984 459 468

[2] Ash, Avner, Mcconnell, Mark Cohomology at infinity and the well-rounded retract for general linear groups Duke Math. J. 1997 549 576

[3] Bambah, R. P., Woods, A. C. Minkowski’s conjecture for 𝑛 J. Number Theory 1980 27 48

[4] Bayer-Fluckiger, Eva Lattices and number fields 1999 69 84

[5] Bayer-Fluckiger, Eva Ideal lattices 2002 168 184

[6] Birch, B. J., Swinnerton-Dyer, H. P. F. On the inhomogeneous minimum of the product of 𝑛 linear forms Mathematika 1956 25 39

[7] Borevich, A. I., Shafarevich, I. R. Number theory 1966

[8] Bott, Raoul, Tu, Loring W. Differential forms in algebraic topology 1982

[9] Cassels, J. W. S., Swinnerton-Dyer, H. P. F. On the product of three homogeneous linear forms and the indefinite ternary quadratic forms Philos. Trans. Roy. Soc. London Ser. A 1955 73 96

[10] Conway, J. H., Sloane, N. J. A. Sphere packings, lattices and groups 1999

[11] Dyson, F. J. On the product of four non-homogeneous linear forms Ann. of Math. (2) 1948 82 109

[12] Eilenberg, Samuel, Steenrod, Norman Foundations of algebraic topology 1952

[13] Gromov, Michael Volume and bounded cohomology Inst. Hautes Études Sci. Publ. Math. 1982

[14] Gruber, P. M., Lekkerkerker, C. G. Geometry of numbers 1987

[15] Hurewicz, Witold, Wallman, Henry Dimension Theory 1941

[16] Koksma, J. F. Diophantische Approximationen 1974

[17] Lindenstrauss, Elon, Weiss, Barak On sets invariant under the action of the diagonal group Ergodic Theory Dynam. Systems 2001 1481 1500

[18] Margulis, Gregory Problems and conjectures in rigidity theory 2000 161 174

[19] Minkowski, Hermann Diophantische Approximationen. Eine Einführung in die Zahlentheorie 1957

[20] Oh, Hee Finiteness of compact maximal flats of bounded volume Ergodic Theory Dynam. Systems 2004 217 225

[21] Pansu, Pierre Introduction to 𝐿² Betti numbers 1996 53 86

[22] Raghunathan, M. S. Discrete subgroups of Lie groups 1972

[23] Skubenko, B. F. A new variant of the proof of the inhomogeneous Minkowski conjecture for 𝑛 Trudy Mat. Inst. Steklov. 1976

[24] Soulã©, Christophe The cohomology of 𝑆𝐿₃(𝑍) Topology 1978 1 22

[25] Tomanov, George, Weiss, Barak Closed orbits for actions of maximal tori on homogeneous spaces Duke Math. J. 2003 367 392

[26] Vã¡Mos, P. The missing axiom of matroid theory is lost forever J. London Math. Soc. (2) 1978 403 408

[27] Woods, A. C. Covering six space with spheres J. Number Theory 1972 157 180

Cité par Sources :