On the Farrell-Jones conjecture for higher algebraic 𝐾-theory
Journal of the American Mathematical Society, Tome 18 (2005) no. 3, pp. 501-545

Voir la notice de l'article provenant de la source American Mathematical Society

We prove the Farrell-Jones Conjecture for the algebraic $K$-theory of a group ring $R \Gamma$ in the case where the group $\Gamma$ is the fundamental group of a closed Riemannian manifold with strictly negative sectional curvature. The coefficient ring $R$ is an arbitrary associative ring with unit and the result applies to all dimensions.
DOI : 10.1090/S0894-0347-05-00482-0

Bartels, Arthur 1 ; Reich, Holger 1

1 Fachbereich Mathematik, Universität Münster, Einsteinstr. 62, 48149 Münster, Germany
@article{10_1090_S0894_0347_05_00482_0,
     author = {Bartels, Arthur and Reich, Holger},
     title = {On the {Farrell-Jones} conjecture for higher algebraic {\dh}{\textthreequarters}-theory},
     journal = {Journal of the American Mathematical Society},
     pages = {501--545},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00482-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00482-0/}
}
TY  - JOUR
AU  - Bartels, Arthur
AU  - Reich, Holger
TI  - On the Farrell-Jones conjecture for higher algebraic 𝐾-theory
JO  - Journal of the American Mathematical Society
PY  - 2005
SP  - 501
EP  - 545
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00482-0/
DO  - 10.1090/S0894-0347-05-00482-0
ID  - 10_1090_S0894_0347_05_00482_0
ER  - 
%0 Journal Article
%A Bartels, Arthur
%A Reich, Holger
%T On the Farrell-Jones conjecture for higher algebraic 𝐾-theory
%J Journal of the American Mathematical Society
%D 2005
%P 501-545
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00482-0/
%R 10.1090/S0894-0347-05-00482-0
%F 10_1090_S0894_0347_05_00482_0
Bartels, Arthur; Reich, Holger. On the Farrell-Jones conjecture for higher algebraic 𝐾-theory. Journal of the American Mathematical Society, Tome 18 (2005) no. 3, pp. 501-545. doi: 10.1090/S0894-0347-05-00482-0

[1] Anderson, Michael T., Schoen, Richard Positive harmonic functions on complete manifolds of negative curvature Ann. of Math. (2) 1985 429 461

[2] Bass, Hyman Algebraic 𝐾-theory 1968

[3] Ballmann, Werner, Brin, Misha, Eberlein, Patrick Structure of manifolds of nonpositive curvature. I Ann. of Math. (2) 1985 171 203

[4] Baum, Paul, Connes, Alain, Higson, Nigel Classifying space for proper actions and 𝐾-theory of group 𝐶*-algebras 1994 240 291

[5] Bartels, Arthur, Farrell, Tom, Jones, Lowell, Reich, Holger A foliated squeezing theorem for geometric modules 2003 1 21

[6] Bartels, Arthur, Farrell, Tom, Jones, Lowell, Reich, Holger On the isomorphism conjecture in algebraic 𝐾-theory Topology 2004 157 213

[7] Bass, H., Heller, A., Swan, R. G. The Whitehead group of a polynomial extension Inst. Hautes Études Sci. Publ. Math. 1964 61 79

[8] Bishop, R. L., O’Neill, B. Manifolds of negative curvature Trans. Amer. Math. Soc. 1969 1 49

[9] Cheeger, Jeff, Ebin, David G. Comparison theorems in Riemannian geometry 1975

[10] Cã¡Rdenas, M., Pedersen, E. K. On the Karoubi filtration of a category 𝐾-Theory 1997 165 191

[11] Davis, James F., Lã¼Ck, Wolfgang Spaces over a category and assembly maps in isomorphism conjectures in 𝐾- and 𝐿-theory 𝐾-Theory 1998 201 252

[12] Eberlein, Patrick, Hamenstã¤Dt, Ursula, Schroeder, Viktor Manifolds of nonpositive curvature 1993 179 227

[13] Eberlein, P., O’Neill, B. Visibility manifolds Pacific J. Math. 1973 45 109

[14] Farrell, F. T., Jones, L. E. 𝐾-theory and dynamics. I Ann. of Math. (2) 1986 531 569

[15] Farrell, F. T., Jones, L. E. 𝐾-theory and dynamics. II Ann. of Math. (2) 1987 451 493

[16] Farrell, F. T., Jones, L. E. A topological analogue of Mostow’s rigidity theorem J. Amer. Math. Soc. 1989 257 370

[17] Farrell, F. T., Jones, L. E. Stable pseudoisotopy spaces of compact non-positively curved manifolds J. Differential Geom. 1991 769 834

[18] Farrell, F. T., Jones, L. E. Isomorphism conjectures in algebraic 𝐾-theory J. Amer. Math. Soc. 1993 249 297

[19] Farrell, F. T., Jones, L. E. Topological rigidity for compact non-positively curved manifolds 1993 229 274

[20] Grayson, Daniel Higher algebraic 𝐾-theory. II (after Daniel Quillen) 1976 217 240

[21] Heintze, Ernst, Im Hof, Hans-Christoph Geometry of horospheres J. Differential Geometry 1977

[22] Hambleton, Ian, Pedersen, Erik K. Identifying assembly maps in 𝐾- and 𝐿-theory Math. Ann. 2004 27 57

[23] Higson, Nigel, Pedersen, Erik Kjã¦R, Roe, John 𝐶*-algebras and controlled topology 𝐾-Theory 1997 209 239

[24] Hsiang, Wu Chung Geometric applications of algebraic 𝐾-theory 1984 99 118

[25] Karoubi, Max Foncteurs dérivés et 𝐾-théorie 1970 107 186

[26] Loday, Jean-Louis 𝐾-théorie algébrique et représentations de groupes Ann. Sci. École Norm. Sup. (4) 1976 309 377

[27] Perko, Lawrence Differential equations and dynamical systems 2001

[28] Pedersen, Erik Kjaer, Taylor, Lawrence R. The Wall finiteness obstruction for a fibration Amer. J. Math. 1978 887 896

[29] Pedersen, Erik K., Weibel, Charles A. A nonconnective delooping of algebraic 𝐾-theory 1985 166 181

[30] Pedersen, Erik K., Weibel, Charles A. 𝐾-theory homology of spaces 1989 346 361

[31] Quillen, Daniel Higher algebraic 𝐾-theory. I 1973 85 147

[32] Quinn, Frank Ends of maps. II Invent. Math. 1982 353 424

[33] Tom Dieck, Tammo Orbittypen und äquivariante Homologie. I Arch. Math. (Basel) 1972 307 317

[34] Tom Dieck, Tammo Transformation groups 1987

[35] Thomason, R. W., Trobaugh, Thomas Higher algebraic 𝐾-theory of schemes and of derived categories 1990 247 435

[36] Waldhausen, Friedhelm Algebraic 𝐾-theory of generalized free products. I, II Ann. of Math. (2) 1978 135 204

[37] Waldhausen, Friedhelm Algebraic 𝐾-theory of spaces 1985 318 419

Cité par Sources :