Voir la notice de l'article provenant de la source American Mathematical Society
Favre, Charles 1 ; Jonsson, Mattias 2, 3
@article{10_1090_S0894_0347_05_00481_9,
     author = {Favre, Charles and Jonsson, Mattias},
     title = {Valuations and multiplier ideals},
     journal = {Journal of the American Mathematical Society},
     pages = {655--684},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00481-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00481-9/}
}
                      
                      
                    TY - JOUR AU - Favre, Charles AU - Jonsson, Mattias TI - Valuations and multiplier ideals JO - Journal of the American Mathematical Society PY - 2005 SP - 655 EP - 684 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00481-9/ DO - 10.1090/S0894-0347-05-00481-9 ID - 10_1090_S0894_0347_05_00481_9 ER -
%0 Journal Article %A Favre, Charles %A Jonsson, Mattias %T Valuations and multiplier ideals %J Journal of the American Mathematical Society %D 2005 %P 655-684 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00481-9/ %R 10.1090/S0894-0347-05-00481-9 %F 10_1090_S0894_0347_05_00481_9
Favre, Charles; Jonsson, Mattias. Valuations and multiplier ideals. Journal of the American Mathematical Society, Tome 18 (2005) no. 3, pp. 655-684. doi: 10.1090/S0894-0347-05-00481-9
[1] Multiplier ideal sheaves and analytic methods in algebraic geometry 2001 1 148
[2] , , A subadditivity property of multiplier ideals Michigan Math. J. 2000 137 156
[3] , Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds Ann. Sci. Ãcole Norm. Sup. (4) 2001 525 556
[4] , , Uniform approximation of Abhyankar valuation ideals in smooth function fields Amer. J. Math. 2003 409 440
[5] , The valuative tree 2004
[6] On the first terms of certain asymptotic expansions 1977 357 368
[7] Attenuating the singularities of plurisubharmonic functions Ann. Polon. Math. 1994 173 197
[8] On log canonical thresholds of reducible plane curves Amer. J. Math. 1999 701 721
[9] Positivity in algebraic geometry. I 2004
[10] Adjoints of ideals in regular local rings Math. Res. Lett. 1994 739 755
[11] , Integrally closed ideals in two-dimensional regular local rings are multiplier ideals Math. Res. Lett. 2003 423 434
[12] , Threefold thresholds Manuscripta Math. 2004 281 304
[13] Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature Ann. of Math. (2) 1990 549 596
[14] , On a conjecture of Demailly and Kollár Asian J. Math. 2000 221 226
[15] Three-dimensional log perestroikas Izv. Ross. Akad. Nauk Ser. Mat. 1992 105 203
[16] Valuations in function fields of surfaces Amer. J. Math. 1990 107 156
[17] Sous-ensembles analytiques dâordre fini ou infini dans ð¶â¿ Bull. Soc. Math. France 1972 353 408
[18] , When does the subadditivity theorem for multiplier ideals hold? Trans. Amer. Math. Soc. 2004 3951 3961
Cité par Sources :
