Valuations and multiplier ideals
Journal of the American Mathematical Society, Tome 18 (2005) no. 3, pp. 655-684

Voir la notice de l'article provenant de la source American Mathematical Society

We present a new approach to the study of multiplier ideals in a local, two-dimensional setting. Our method allows us to deal with ideals, graded systems of ideals and plurisubharmonic functions in a unified way. Among the applications are a formula for the complex integrability exponent of a plurisubharmonic function in terms of Kiselman numbers, and a proof of the openness conjecture by Demailly and Kollár. Our technique also yields new proofs of two recent results: one on the structure of the set of complex singularity exponents for holomorphic functions; the other by Lipman and Watanabe on the realization of ideals as multiplier ideals.
DOI : 10.1090/S0894-0347-05-00481-9

Favre, Charles 1 ; Jonsson, Mattias 2, 3

1 CNRS, Institut de Mathématiques, Equipe Géométrie et Dynamique, F-75251 Paris Cedex 05, France
2 Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109
3 Department of Mathematics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
@article{10_1090_S0894_0347_05_00481_9,
     author = {Favre, Charles and Jonsson, Mattias},
     title = {Valuations and multiplier ideals},
     journal = {Journal of the American Mathematical Society},
     pages = {655--684},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00481-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00481-9/}
}
TY  - JOUR
AU  - Favre, Charles
AU  - Jonsson, Mattias
TI  - Valuations and multiplier ideals
JO  - Journal of the American Mathematical Society
PY  - 2005
SP  - 655
EP  - 684
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00481-9/
DO  - 10.1090/S0894-0347-05-00481-9
ID  - 10_1090_S0894_0347_05_00481_9
ER  - 
%0 Journal Article
%A Favre, Charles
%A Jonsson, Mattias
%T Valuations and multiplier ideals
%J Journal of the American Mathematical Society
%D 2005
%P 655-684
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00481-9/
%R 10.1090/S0894-0347-05-00481-9
%F 10_1090_S0894_0347_05_00481_9
Favre, Charles; Jonsson, Mattias. Valuations and multiplier ideals. Journal of the American Mathematical Society, Tome 18 (2005) no. 3, pp. 655-684. doi: 10.1090/S0894-0347-05-00481-9

[1] Demailly, Jean-Pierre Multiplier ideal sheaves and analytic methods in algebraic geometry 2001 1 148

[2] Demailly, Jean-Pierre, Ein, Lawrence, Lazarsfeld, Robert A subadditivity property of multiplier ideals Michigan Math. J. 2000 137 156

[3] Demailly, Jean-Pierre, Kollã¡R, Jã¡Nos Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds Ann. Sci. École Norm. Sup. (4) 2001 525 556

[4] Ein, Lawrence, Lazarsfeld, Robert, Smith, Karen E. Uniform approximation of Abhyankar valuation ideals in smooth function fields Amer. J. Math. 2003 409 440

[5] Favre, Charles, Jonsson, Mattias The valuative tree 2004

[6] Igusa, J. On the first terms of certain asymptotic expansions 1977 357 368

[7] Kiselman, Christer O. Attenuating the singularities of plurisubharmonic functions Ann. Polon. Math. 1994 173 197

[8] Kuwata, Takayasu On log canonical thresholds of reducible plane curves Amer. J. Math. 1999 701 721

[9] Lazarsfeld, Robert Positivity in algebraic geometry. I 2004

[10] Lipman, Joseph Adjoints of ideals in regular local rings Math. Res. Lett. 1994 739 755

[11] Lipman, Joseph, Watanabe, Kei-Ichi Integrally closed ideals in two-dimensional regular local rings are multiplier ideals Math. Res. Lett. 2003 423 434

[12] Mckernan, James, Prokhorov, Yuri Threefold thresholds Manuscripta Math. 2004 281 304

[13] Nadel, Alan Michael Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature Ann. of Math. (2) 1990 549 596

[14] Phong, D. H., Sturm, Jacob On a conjecture of Demailly and Kollár Asian J. Math. 2000 221 226

[15] Shokurov, V. V. Three-dimensional log perestroikas Izv. Ross. Akad. Nauk Ser. Mat. 1992 105 203

[16] Spivakovsky, Mark Valuations in function fields of surfaces Amer. J. Math. 1990 107 156

[17] Skoda, Henri Sous-ensembles analytiques d’ordre fini ou infini dans 𝐶ⁿ Bull. Soc. Math. France 1972 353 408

[18] Takagi, Shunsuke, Watanabe, Kei-Ichi When does the subadditivity theorem for multiplier ideals hold? Trans. Amer. Math. Soc. 2004 3951 3961

Cité par Sources :