Voir la notice de l'article provenant de la source American Mathematical Society
Gaboriau, Damien 1 ; Popa, Sorin 2
@article{10_1090_S0894_0347_05_00480_7,
author = {Gaboriau, Damien and Popa, Sorin},
title = {An uncountable family of nonorbit equivalent actions of {\dh}{\textonehalf}_{{\dh}}},
journal = {Journal of the American Mathematical Society},
pages = {547--559},
publisher = {mathdoc},
volume = {18},
number = {3},
year = {2005},
doi = {10.1090/S0894-0347-05-00480-7},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00480-7/}
}
TY - JOUR
AU - Gaboriau, Damien
AU - Popa, Sorin
TI - An uncountable family of nonorbit equivalent actions of ð½_{ð}
JO - Journal of the American Mathematical Society
PY - 2005
SP - 547
EP - 559
VL - 18
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00480-7/
DO - 10.1090/S0894-0347-05-00480-7
ID - 10_1090_S0894_0347_05_00480_7
ER -
%0 Journal Article
%A Gaboriau, Damien
%A Popa, Sorin
%T An uncountable family of nonorbit equivalent actions of ð½_{ð}
%J Journal of the American Mathematical Society
%D 2005
%P 547-559
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00480-7/
%R 10.1090/S0894-0347-05-00480-7
%F 10_1090_S0894_0347_05_00480_7
Gaboriau, Damien; Popa, Sorin. An uncountable family of nonorbit equivalent actions of ð½_{ð}. Journal of the American Mathematical Society, Tome 18 (2005) no. 3, pp. 547-559. doi: 10.1090/S0894-0347-05-00480-7
[1] , Hyperfinite and ð¼ð¼â actions for nonamenable groups J. Functional Analysis 1981 30 44
[2] Kazhdan constants for ðð¿(3,ð) J. Reine Angew. Math. 1991 36 67
[3] , , An amenable equivalence relation is generated by a single transformation Ergodic Theory Dynam. Systems 1981
[4] , Property ð for von Neumann algebras Bull. London Math. Soc. 1985 57 62
[5] A factor of type ð¼ð¼â with countable fundamental group J. Operator Theory 1980 151 153
[6] Asymptotically invariant sequences and an action of ðð¿(2,ð) on the 2-sphere Israel J. Math. 1980 193 208
[7] , La propriété (ð) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger) Astérisque 1989 158
[8] On groups of measure preserving transformations. I Amer. J. Math. 1959 119 159
[9] , Ergodic equivalence relations, cohomology, and von Neumann algebras. I Trans. Amer. Math. Soc. 1977 289 324
[10] Coût des relations dâéquivalence et des groupes Invent. Math. 2000 41 98
[11] Invariants ð² de relations dâéquivalence et de groupes Publ. Math. Inst. Hautes Ãtudes Sci. 2002 93 150
[12] , Fundamental groups for ergodic actions and actions with unit fundamental groups Publ. Res. Inst. Math. Sci. 1988
[13] An example of a nonnuclear ð¶*-algebra, which has the metric approximation property Invent. Math. 1978/79 279 293
[14] Finitely-additive invariant measures on Euclidean spaces Ergodic Theory Dynam. Systems 1982
[15] Uncountably many ð¼ð¼â factors Ann. of Math. (2) 1969 372 377
[16] , On rings of operators Ann. of Math. (2) 1936 116 229
[17] , On rings of operators. IV Ann. of Math. (2) 1943 716 808
[18] , Ergodic theory of amenable group actions. I. The Rohlin lemma Bull. Amer. Math. Soc. (N.S.) 1980 161 164
[19] Ergodic theory and semisimple groups 1984
Cité par Sources :