An uncountable family of nonorbit equivalent actions of 𝔽_{𝕟}
Journal of the American Mathematical Society, Tome 18 (2005) no. 3, pp. 547-559

Voir la notice de l'article provenant de la source American Mathematical Society

For each $2 \leq n \leq \infty$, we construct an uncountable family of free ergodic measure preserving actions $\alpha _t$ of the free group $\mathbb {F}_n$ on the standard probability space $(X, \mu )$ such that any two are nonorbit equivalent (in fact, not even stably orbit equivalent). These actions are all “rigid” (in the sense of Popa), with the II$_1$ factors $L^\infty (X, \mu )\rtimes _{\alpha _t} \mathbb {F}_n$ mutually nonisomorphic (even nonstably isomorphic) and in the class $\mathcal {H}\mathcal {T}_{_{s}}.$
DOI : 10.1090/S0894-0347-05-00480-7

Gaboriau, Damien 1 ; Popa, Sorin 2

1 Umpa, UMR CNRS 5669, ENS-Lyon, F-69364 Lyon Cedex 7, France
2 Department of Mathematics, Univeristy of California, Los Angeles, California 90095-1555
@article{10_1090_S0894_0347_05_00480_7,
     author = {Gaboriau, Damien and Popa, Sorin},
     title = {An uncountable family of nonorbit equivalent actions of {\dh}”{\textonehalf}_{{\dh}•Ÿ}},
     journal = {Journal of the American Mathematical Society},
     pages = {547--559},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00480-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00480-7/}
}
TY  - JOUR
AU  - Gaboriau, Damien
AU  - Popa, Sorin
TI  - An uncountable family of nonorbit equivalent actions of 𝔽_{𝕟}
JO  - Journal of the American Mathematical Society
PY  - 2005
SP  - 547
EP  - 559
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00480-7/
DO  - 10.1090/S0894-0347-05-00480-7
ID  - 10_1090_S0894_0347_05_00480_7
ER  - 
%0 Journal Article
%A Gaboriau, Damien
%A Popa, Sorin
%T An uncountable family of nonorbit equivalent actions of 𝔽_{𝕟}
%J Journal of the American Mathematical Society
%D 2005
%P 547-559
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00480-7/
%R 10.1090/S0894-0347-05-00480-7
%F 10_1090_S0894_0347_05_00480_7
Gaboriau, Damien; Popa, Sorin. An uncountable family of nonorbit equivalent actions of 𝔽_{𝕟}. Journal of the American Mathematical Society, Tome 18 (2005) no. 3, pp. 547-559. doi: 10.1090/S0894-0347-05-00480-7

[1] Bezuglyä­, S. I., Golodets, V. Ya. Hyperfinite and 𝐼𝐼₁ actions for nonamenable groups J. Functional Analysis 1981 30 44

[2] Burger, M. Kazhdan constants for 𝑆𝐿(3,𝑍) J. Reine Angew. Math. 1991 36 67

[3] Connes, A., Feldman, J., Weiss, B. An amenable equivalence relation is generated by a single transformation Ergodic Theory Dynam. Systems 1981

[4] Connes, A., Jones, V. Property 𝑇 for von Neumann algebras Bull. London Math. Soc. 1985 57 62

[5] Connes, A. A factor of type 𝐼𝐼₁ with countable fundamental group J. Operator Theory 1980 151 153

[6] Schmidt, Klaus Asymptotically invariant sequences and an action of 𝑆𝐿(2,𝑍) on the 2-sphere Israel J. Math. 1980 193 208

[7] De La Harpe, Pierre, Valette, Alain La propriété (𝑇) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger) Astérisque 1989 158

[8] Dye, H. A. On groups of measure preserving transformations. I Amer. J. Math. 1959 119 159

[9] Feldman, Jacob, Moore, Calvin C. Ergodic equivalence relations, cohomology, and von Neumann algebras. I Trans. Amer. Math. Soc. 1977 289 324

[10] Gaboriau, Damien Coût des relations d’équivalence et des groupes Invent. Math. 2000 41 98

[11] Gaboriau, Damien Invariants 𝑙² de relations d’équivalence et de groupes Publ. Math. Inst. Hautes Études Sci. 2002 93 150

[12] Gefter, Sergey L., Golodets, Valentin Ya. Fundamental groups for ergodic actions and actions with unit fundamental groups Publ. Res. Inst. Math. Sci. 1988

[13] Haagerup, Uffe An example of a nonnuclear 𝐶*-algebra, which has the metric approximation property Invent. Math. 1978/79 279 293

[14] Margulis, G. A. Finitely-additive invariant measures on Euclidean spaces Ergodic Theory Dynam. Systems 1982

[15] Mcduff, Dusa Uncountably many 𝐼𝐼₁ factors Ann. of Math. (2) 1969 372 377

[16] Murray, F. J., Von Neumann, J. On rings of operators Ann. of Math. (2) 1936 116 229

[17] Murray, F. J., Von Neumann, J. On rings of operators. IV Ann. of Math. (2) 1943 716 808

[18] Ornstein, Donald S., Weiss, Benjamin Ergodic theory of amenable group actions. I. The Rohlin lemma Bull. Amer. Math. Soc. (N.S.) 1980 161 164

[19] Zimmer, Robert J. Ergodic theory and semisimple groups 1984

Cité par Sources :