Quasianalyticity and pluripolarity
Journal of the American Mathematical Society, Tome 18 (2005) no. 2, pp. 239-252

Voir la notice de l'article provenant de la source American Mathematical Society

We show that the graph \[ \Gamma _f=\{(z,f(z))\in {\mathbb {C}}^2: z\in S\}\] in ${\mathbb {C}}^2$ of a function $f$ on the unit circle $S$ which is either continuous and quasianalytic in the sense of Bernstein or $C^\infty$ and quasianalytic in the sense of Denjoy is pluripolar.
DOI : 10.1090/S0894-0347-05-00478-9

Coman, Dan 1 ; Levenberg, Norman 2 ; Poletsky, Evgeny 1

1 Department of Mathematics, 215 Carnegie Hall, Syracuse University, Syracuse, New York 13244
2 Department of Mathematics, Indiana University, Bloomington, Indiana 47405
@article{10_1090_S0894_0347_05_00478_9,
     author = {Coman, Dan and Levenberg, Norman and Poletsky, Evgeny},
     title = {Quasianalyticity and pluripolarity},
     journal = {Journal of the American Mathematical Society},
     pages = {239--252},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00478-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00478-9/}
}
TY  - JOUR
AU  - Coman, Dan
AU  - Levenberg, Norman
AU  - Poletsky, Evgeny
TI  - Quasianalyticity and pluripolarity
JO  - Journal of the American Mathematical Society
PY  - 2005
SP  - 239
EP  - 252
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00478-9/
DO  - 10.1090/S0894-0347-05-00478-9
ID  - 10_1090_S0894_0347_05_00478_9
ER  - 
%0 Journal Article
%A Coman, Dan
%A Levenberg, Norman
%A Poletsky, Evgeny
%T Quasianalyticity and pluripolarity
%J Journal of the American Mathematical Society
%D 2005
%P 239-252
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00478-9/
%R 10.1090/S0894-0347-05-00478-9
%F 10_1090_S0894_0347_05_00478_9
Coman, Dan; Levenberg, Norman; Poletsky, Evgeny. Quasianalyticity and pluripolarity. Journal of the American Mathematical Society, Tome 18 (2005) no. 2, pp. 239-252. doi: 10.1090/S0894-0347-05-00478-9

[1] Bedford, Eric, Taylor, B. A. A new capacity for plurisubharmonic functions Acta Math. 1982 1 40

[2] Demailly, Jean-Pierre Mesures de Monge-Ampère et mesures pluriharmoniques Math. Z. 1987 519 564

[3] Diederich, Klas, Fornã¦Ss, John Erik A smooth curve in 𝐶² which is not a pluripolar set Duke Math. J. 1982 931 936

[4] Katznelson, Yitzhak An introduction to harmonic analysis 1976

[5] Klimek, Maciej Pluripotential theory 1991

[6] Krantz, Steven G., Parks, Harold R. A primer of real analytic functions 1992

[7] Lelong, Pierre Fonction de Green pluricomplexe et lemmes de Schwarz dans les espaces de Banach J. Math. Pures Appl. (9) 1989 319 347

[8] Levenberg, N., Martin, G., Poletsky, E. A. Analytic disks and pluripolar sets Indiana Univ. Math. J. 1992 515 532

[9] Mandelbrojt, S. Sur les fonctions indéfiniment dérivables Acta Math. 1940 15 29

[10] Pleå›Niak, W. Quasianalytic functions in the sense of Bernstein Dissertationes Math. (Rozprawy Mat.) 1977 66

[11] Timan, A. F. Theory of approximation of functions of a real variable 1963

Cité par Sources :