Enumerative tropical algebraic geometry in ℝ²
Journal of the American Mathematical Society, Tome 18 (2005) no. 2, pp. 313-377

Voir la notice de l'article provenant de la source American Mathematical Society

The paper establishes a formula for enumeration of curves of arbitrary genus in toric surfaces. It turns out that such curves can be counted by means of certain lattice paths in the Newton polygon. The formula was announced earlier in Counting curves via lattice paths in polygons, C. R. Math. Acad. Sci. Paris 336 (2003), no. 8, 629–634. The result is established with the help of the so-called tropical algebraic geometry. This geometry allows one to replace complex toric varieties with the real space $\mathbb {R}^n$ and holomorphic curves with certain piecewise-linear graphs there.
DOI : 10.1090/S0894-0347-05-00477-7

Mikhalkin, Grigory 1, 2

1 Department of Mathematics, University of Toronto, 100 St. George St., Toronto, Ontario, M5S 3G3 Canada and St. Petersburg Branch of Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191011 Russia
2 IHES, Le Bois-Marie, 35, route de Chartres, Bures-sur-Yvette, 91440, France
@article{10_1090_S0894_0347_05_00477_7,
     author = {Mikhalkin, Grigory},
     title = {Enumerative tropical algebraic geometry in {\^a„\^A{\texttwosuperior}}},
     journal = {Journal of the American Mathematical Society},
     pages = {313--377},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00477-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00477-7/}
}
TY  - JOUR
AU  - Mikhalkin, Grigory
TI  - Enumerative tropical algebraic geometry in ℝ²
JO  - Journal of the American Mathematical Society
PY  - 2005
SP  - 313
EP  - 377
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00477-7/
DO  - 10.1090/S0894-0347-05-00477-7
ID  - 10_1090_S0894_0347_05_00477_7
ER  - 
%0 Journal Article
%A Mikhalkin, Grigory
%T Enumerative tropical algebraic geometry in ℝ²
%J Journal of the American Mathematical Society
%D 2005
%P 313-377
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00477-7/
%R 10.1090/S0894-0347-05-00477-7
%F 10_1090_S0894_0347_05_00477_7
Mikhalkin, Grigory. Enumerative tropical algebraic geometry in ℝ². Journal of the American Mathematical Society, Tome 18 (2005) no. 2, pp. 313-377. doi: 10.1090/S0894-0347-05-00477-7

[1] Aharony, Ofer, Hanany, Amihay Branes, superpotentials and superconformal fixed points Nuclear Phys. B 1997 239 271

[2] Caporaso, Lucia, Harris, Joe Counting plane curves of any genus Invent. Math. 1998 345 392

[3] Eliashberg, Y., Givental, A., Hofer, H. Introduction to symplectic field theory Geom. Funct. Anal. 2000 560 673

[4] Forsberg, Mikael, Passare, Mikael, Tsikh, August Laurent determinants and arrangements of hyperplane amoebas Adv. Math. 2000 45 70

[5] Gel′Fand, I. M., Kapranov, M. M., Zelevinsky, A. V. Discriminants, resultants, and multidimensional determinants 1994

[6] Harris, Joe, Morrison, Ian Moduli of curves 1998

[7] Itenberg, Ilia, Kharlamov, Viatcheslav, Shustin, Eugenii Welschinger invariant and enumeration of real rational curves Int. Math. Res. Not. 2003 2639 2653

[8] Hovanskiä­, A. G. Newton polyhedra, and toroidal varieties Funkcional. Anal. i Priložen. 1977

[9] Kontsevich, M., Manin, Yu. Gromov-Witten classes, quantum cohomology, and enumerative geometry Comm. Math. Phys. 1994 525 562

[10] Kontsevich, Maxim, Soibelman, Yan Homological mirror symmetry and torus fibrations 2001 203 263

[11] Kouchnirenko, A. G. Polyèdres de Newton et nombres de Milnor Invent. Math. 1976 1 31

[12] Litvinov, Grigori L., Maslov, Victor P. The correspondence principle for idempotent calculus and some computer applications 1998 420 443

[13] Mikhalkin, G. Real algebraic curves, the moment map and amoebas Ann. of Math. (2) 2000 309 326

[14] Mikhalkin, Grigory Decomposition into pairs-of-pants for complex algebraic hypersurfaces Topology 2004 1035 1065

[15] Mikhalkin, Grigory Counting curves via lattice paths in polygons C. R. Math. Acad. Sci. Paris 2003 629 634

[16] Passare, Mikael, Rullgã¥Rd, Hans Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope Duke Math. J. 2004 481 507

[17] Pin, Jean-Eric Tropical semirings 1998 50 69

[18] Ran, Z. Enumerative geometry of singular plane curves Invent. Math. 1989 447 465

[19] Speyer, David, Sturmfels, Bernd The tropical Grassmannian Adv. Geom. 2004 389 411

[20] Strominger, Andrew, Yau, Shing-Tung, Zaslow, Eric Mirror symmetry is 𝑇-duality Nuclear Phys. B 1996 243 259

[21] Sturmfels, Bernd Solving systems of polynomial equations 2002

[22] Vakil, Ravi Counting curves on rational surfaces Manuscripta Math. 2000 53 84

[23] Viro, O. Ya. Gluing of plane real algebraic curves and constructions of curves of degrees 6 and 7 1984 187 200

[24] Welschinger, Jean-Yves Invariants of real rational symplectic 4-manifolds and lower bounds in real enumerative geometry C. R. Math. Acad. Sci. Paris 2003 341 344

Cité par Sources :