@article{10_1090_S0894_0347_05_00476_5,
author = {Bourgain, J.},
title = {Mordell{\textquoteright}s exponential sum estimate revisited},
journal = {Journal of the American Mathematical Society},
pages = {477--499},
year = {2005},
volume = {18},
number = {2},
doi = {10.1090/S0894-0347-05-00476-5},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00476-5/}
}
TY - JOUR AU - Bourgain, J. TI - Mordell’s exponential sum estimate revisited JO - Journal of the American Mathematical Society PY - 2005 SP - 477 EP - 499 VL - 18 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00476-5/ DO - 10.1090/S0894-0347-05-00476-5 ID - 10_1090_S0894_0347_05_00476_5 ER -
Bourgain, J. Mordell’s exponential sum estimate revisited. Journal of the American Mathematical Society, Tome 18 (2005) no. 2, pp. 477-499. doi: 10.1090/S0894-0347-05-00476-5
[1] , Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order C. R. Math. Acad. Sci. Paris 2003 75 80
[2] , , A sum-product estimate in finite fields, and applications Geom. Funct. Anal. 2004 27 57
[3] , An improved Mordell type bound for exponential sums Proc. Amer. Math. Soc. 2005 313 320
[4] , Stepanov’s method applied to binomial exponential sums Q. J. Math. 2003 243 255
[5] , , Period of the power generator and small values of Carmichael’s function Math. Comp. 2001 1591 1605
[6] , On the distribution of the power generator Math. Comp. 2001 1575 1589
[7] A new proof of Szemerédi’s theorem for arithmetic progressions of length four Geom. Funct. Anal. 1998 529 551
[8] , Character sums with exponential functions and their applications 1999
[9] Additive number theory 1996
Cité par Sources :