Mordell’s exponential sum estimate revisited
Journal of the American Mathematical Society, Tome 18 (2005) no. 2, pp. 477-499

Voir la notice de l'article provenant de la source American Mathematical Society

The aim of this paper is to extend recent work of S. Konyagin and the author on Gauss sum estimates for large degree to the case of ‘sparse’ polynomials. In this context we do obtain a nearly optimal result, improving on the works of Mordell and of Cochrane and Pinner. The result is optimal in terms of providing some power gain under conditions on the exponents in the polynomial that are best possible if we allow arbitrary coefficients. As in earlier work referred to above, our main combinatorial tool is a sum-product theorem. Here we need a version for product spaces $\mathbb {F}_{p}\times \mathbb {F}_{p}$ for which the formulation is obviously not as simple as in the $\mathbb {F}_{p}$-case. Again, the method applies more generally to provide nontrivial bounds on (possibly incomplete) exponential sums involving exponential functions. At the end of the paper, some applications of these are given to issues of uniform distribution for power generators in cryptography.
DOI : 10.1090/S0894-0347-05-00476-5

Bourgain, J. 1

1 School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
@article{10_1090_S0894_0347_05_00476_5,
     author = {Bourgain, J.},
     title = {Mordell\^a€™s exponential sum estimate revisited},
     journal = {Journal of the American Mathematical Society},
     pages = {477--499},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00476-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00476-5/}
}
TY  - JOUR
AU  - Bourgain, J.
TI  - Mordell’s exponential sum estimate revisited
JO  - Journal of the American Mathematical Society
PY  - 2005
SP  - 477
EP  - 499
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00476-5/
DO  - 10.1090/S0894-0347-05-00476-5
ID  - 10_1090_S0894_0347_05_00476_5
ER  - 
%0 Journal Article
%A Bourgain, J.
%T Mordell’s exponential sum estimate revisited
%J Journal of the American Mathematical Society
%D 2005
%P 477-499
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00476-5/
%R 10.1090/S0894-0347-05-00476-5
%F 10_1090_S0894_0347_05_00476_5
Bourgain, J. Mordell’s exponential sum estimate revisited. Journal of the American Mathematical Society, Tome 18 (2005) no. 2, pp. 477-499. doi: 10.1090/S0894-0347-05-00476-5

[1] Bourgain, Jean, Konyagin, S. V. Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order C. R. Math. Acad. Sci. Paris 2003 75 80

[2] Bourgain, J., Katz, N., Tao, T. A sum-product estimate in finite fields, and applications Geom. Funct. Anal. 2004 27 57

[3] Cochrane, Todd, Pinner, Christopher An improved Mordell type bound for exponential sums Proc. Amer. Math. Soc. 2005 313 320

[4] Cochrane, Todd, Pinner, Christopher Stepanov’s method applied to binomial exponential sums Q. J. Math. 2003 243 255

[5] Friedlander, John B., Pomerance, Carl, Shparlinski, Igor E. Period of the power generator and small values of Carmichael’s function Math. Comp. 2001 1591 1605

[6] Friedlander, John B., Shparlinski, Igor E. On the distribution of the power generator Math. Comp. 2001 1575 1589

[7] Gowers, W. T. A new proof of Szemerédi’s theorem for arithmetic progressions of length four Geom. Funct. Anal. 1998 529 551

[8] Konyagin, Sergei V., Shparlinski, Igor E. Character sums with exponential functions and their applications 1999

[9] Nathanson, Melvyn B. Additive number theory 1996

Cité par Sources :