Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_05_00476_5,
     author = {Bourgain, J.},
     title = {Mordell\^as exponential sum estimate revisited},
     journal = {Journal of the American Mathematical Society},
     pages = {477--499},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00476-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00476-5/}
}
                      
                      
                    TY - JOUR AU - Bourgain, J. TI - Mordellâs exponential sum estimate revisited JO - Journal of the American Mathematical Society PY - 2005 SP - 477 EP - 499 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00476-5/ DO - 10.1090/S0894-0347-05-00476-5 ID - 10_1090_S0894_0347_05_00476_5 ER -
%0 Journal Article %A Bourgain, J. %T Mordellâs exponential sum estimate revisited %J Journal of the American Mathematical Society %D 2005 %P 477-499 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00476-5/ %R 10.1090/S0894-0347-05-00476-5 %F 10_1090_S0894_0347_05_00476_5
Bourgain, J. Mordellâs exponential sum estimate revisited. Journal of the American Mathematical Society, Tome 18 (2005) no. 2, pp. 477-499. doi: 10.1090/S0894-0347-05-00476-5
[1] , Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order C. R. Math. Acad. Sci. Paris 2003 75 80
[2] , , A sum-product estimate in finite fields, and applications Geom. Funct. Anal. 2004 27 57
[3] , An improved Mordell type bound for exponential sums Proc. Amer. Math. Soc. 2005 313 320
[4] , Stepanovâs method applied to binomial exponential sums Q. J. Math. 2003 243 255
[5] , , Period of the power generator and small values of Carmichaelâs function Math. Comp. 2001 1591 1605
[6] , On the distribution of the power generator Math. Comp. 2001 1575 1589
[7] A new proof of Szemerédiâs theorem for arithmetic progressions of length four Geom. Funct. Anal. 1998 529 551
[8] , Character sums with exponential functions and their applications 1999
[9] Additive number theory 1996
Cité par Sources :
