The affine Plateau problem
Journal of the American Mathematical Society, Tome 18 (2005) no. 2, pp. 253-289

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper, we study a second order variational problem for locally convex hypersurfaces, which is the affine invariant analogue of the classical Plateau problem for minimal surfaces. We prove existence, regularity and uniqueness results for hypersurfaces maximizing affine area under appropriate boundary conditions.
DOI : 10.1090/S0894-0347-05-00475-3

Trudinger, Neil 1 ; Wang, Xu-Jia 2

1 Centre for Mathematics and Its Applications, The Australian National University, Canberra, ACT 0200, Australia
2 Centre for Mathematics and Its Applications, Australian National University, Canberra, ACT 0200, Australia
@article{10_1090_S0894_0347_05_00475_3,
     author = {Trudinger, Neil and Wang, Xu-Jia},
     title = {The affine {Plateau} problem},
     journal = {Journal of the American Mathematical Society},
     pages = {253--289},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00475-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00475-3/}
}
TY  - JOUR
AU  - Trudinger, Neil
AU  - Wang, Xu-Jia
TI  - The affine Plateau problem
JO  - Journal of the American Mathematical Society
PY  - 2005
SP  - 253
EP  - 289
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00475-3/
DO  - 10.1090/S0894-0347-05-00475-3
ID  - 10_1090_S0894_0347_05_00475_3
ER  - 
%0 Journal Article
%A Trudinger, Neil
%A Wang, Xu-Jia
%T The affine Plateau problem
%J Journal of the American Mathematical Society
%D 2005
%P 253-289
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00475-3/
%R 10.1090/S0894-0347-05-00475-3
%F 10_1090_S0894_0347_05_00475_3
Trudinger, Neil; Wang, Xu-Jia. The affine Plateau problem. Journal of the American Mathematical Society, Tome 18 (2005) no. 2, pp. 253-289. doi: 10.1090/S0894-0347-05-00475-3

[1] Caffarelli, L. A. A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity Ann. of Math. (2) 1990 129 134

[2] Caffarelli, Luis A. Interior 𝑊^{2,𝑝} estimates for solutions of the Monge-Ampère equation Ann. of Math. (2) 1990 135 150

[3] Caffarelli, Luis A., Gutiã©Rrez, Cristian E. Properties of the solutions of the linearized Monge-Ampère equation Amer. J. Math. 1997 423 465

[4] Caffarelli, L., Nirenberg, L., Spruck, J. The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation Comm. Pure Appl. Math. 1984 369 402

[5] Calabi, Eugenio Hypersurfaces with maximal affinely invariant area Amer. J. Math. 1982 91 126

[6] Calabi, Eugenio Affine differential geometry and holomorphic curves 1990 15 21

[7] Cheng, Shiu Yuen, Yau, Shing-Tung Complete affine hypersurfaces. I. The completeness of affine metrics Comm. Pure Appl. Math. 1986 839 866

[8] Chern, Shiing Shen Affine minimal hypersurfaces 1979 17 30

[9] Gilbarg, David, Trudinger, Neil S. Elliptic partial differential equations of second order 1983

[10] Guan, Bo, Spruck, Joel Boundary-value problems on 𝑆ⁿ for surfaces of constant Gauss curvature Ann. of Math. (2) 1993 601 624

[11] IvoäKina, N. M. A priori estimate of |𝑢|_{𝐶₂(\overlineΩ)} of convex solutions of the Dirichlet problem for the Monge-Ampère equation Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 1980

[12] Krylov, N. V. Nonlinear elliptic and parabolic equations of the second order 1987

[13] LeichtweiãŸ, Kurt Affine geometry of convex bodies 1998

[14] Lutwak, Erwin Extended affine surface area Adv. Math. 1991 39 68

[15] Nomizu, Katsumi, Sasaki, Takeshi Affine differential geometry 1994

[16] Pogorelov, Aleksey Vasil′Yevich The Minkowski multidimensional problem 1978 106

[17] Safonov, M. V. Classical solution of second-order nonlinear elliptic equations Izv. Akad. Nauk SSSR Ser. Mat. 1988

[18] Simon, Udo Affine differential geometry 2000 905 961

[19] Trudinger, Neil S., Wang, Xu-Jia The Bernstein problem for affine maximal hypersurfaces Invent. Math. 2000 399 422

[20] Trudinger, Neil S., Wang, Xu-Jia On locally convex hypersurfaces with boundary J. Reine Angew. Math. 2002 11 32

[21] Wang, Xu-Jia Affine maximal hypersurfaces 2002 221 231

[22] Ziemer, William P. Weakly differentiable functions 1989

Cité par Sources :