Green currents for holomorphic automorphisms of compact Kähler manifolds
Journal of the American Mathematical Society, Tome 18 (2005) no. 2, pp. 291-312

Voir la notice de l'article provenant de la source American Mathematical Society

Let $f$ be a holomorphic automorphism of a compact Kähler manifold $(X,\omega )$ of dimension $k\geq 2$. We study the convex cones of positive closed $(p,p)$-currents $T_p$, which satisfy a functional relation \[ f^* T_p=\lambda T_p,\ \ \lambda >1,\] and some regularity condition (PB, PC). Under appropriate assumptions on dynamical degrees we introduce closed finite dimensional cones, not reduced to zero, of such currents. In particular, when the topological entropy $\mathrm {h}(f)$ of $f$ is positive, then for some $m\geq 1$, there is a positive closed $(m,m)$-current $T_m$ which satisfies the relation \[ f^* T_m=\exp (\mathrm {h}(f)) T_m.\] Moreover, every quasi-p.s.h. function is integrable with respect to the trace measure of $T_m$. When the dynamical degrees of $f$ are all distinct, we construct an invariant measure $\mu$ as an intersection of closed currents. We show that this measure is mixing and gives no mass to pluripolar sets and to sets of small Hausdorff dimension.
DOI : 10.1090/S0894-0347-04-00474-6

Dinh, Tien-Cuong 1 ; Sibony, Nessim 1

1 Mathématique - Bât. 425, UMR 8628, Université Paris-Sud, 91405 Orsay, France
@article{10_1090_S0894_0347_04_00474_6,
     author = {Dinh, Tien-Cuong and Sibony, Nessim},
     title = {Green currents for holomorphic automorphisms of compact {K\~A{\textcurrency}hler} manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {291--312},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2005},
     doi = {10.1090/S0894-0347-04-00474-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00474-6/}
}
TY  - JOUR
AU  - Dinh, Tien-Cuong
AU  - Sibony, Nessim
TI  - Green currents for holomorphic automorphisms of compact Kähler manifolds
JO  - Journal of the American Mathematical Society
PY  - 2005
SP  - 291
EP  - 312
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00474-6/
DO  - 10.1090/S0894-0347-04-00474-6
ID  - 10_1090_S0894_0347_04_00474_6
ER  - 
%0 Journal Article
%A Dinh, Tien-Cuong
%A Sibony, Nessim
%T Green currents for holomorphic automorphisms of compact Kähler manifolds
%J Journal of the American Mathematical Society
%D 2005
%P 291-312
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00474-6/
%R 10.1090/S0894-0347-04-00474-6
%F 10_1090_S0894_0347_04_00474_6
Dinh, Tien-Cuong; Sibony, Nessim. Green currents for holomorphic automorphisms of compact Kähler manifolds. Journal of the American Mathematical Society, Tome 18 (2005) no. 2, pp. 291-312. doi: 10.1090/S0894-0347-04-00474-6

[1] Bedford, Eric, Lyubich, Mikhail, Smillie, John Polynomial diffeomorphisms of 𝐶². IV. The measure of maximal entropy and laminar currents Invent. Math. 1993 77 125

[2] Bedford, Eric, Smillie, John Polynomial diffeomorphisms of 𝐂². III. Ergodicity, exponents and entropy of the equilibrium measure Math. Ann. 1992 395 420

[3] Blanchard, Andr㩠Sur les variétés analytiques complexes Ann. Sci. École Norm. Sup. (3) 1956 157 202

[4] Bost, J.-B., Gillet, H., Soulã©, C. Heights of projective varieties and positive Green forms J. Amer. Math. Soc. 1994 903 1027

[5] Briend, Jean-Yves, Duval, Julien Deux caractérisations de la mesure d’équilibre d’un endomorphisme de 𝑃^{𝑘}(𝐂) Publ. Math. Inst. Hautes Études Sci. 2001 145 159

[6] Cantat, Serge Dynamique des automorphismes des surfaces 𝐾3 Acta Math. 2001 1 57

[7] Clozel, Laurent, Ullmo, Emmanuel Correspondances modulaires et mesures invariantes J. Reine Angew. Math. 2003 47 83

[8] Demailly, Jean-Pierre Monge-Ampère operators, Lelong numbers and intersection theory 1993 115 193

[9] Demailly, Jean-Pierre Théorie de Hodge 𝐿² et théorèmes d’annulation 1996 3 111

[10] Demailly, Jean-Pierre Pseudoconvex-concave duality and regularization of currents 1999 233 271

[11] Dinh, Tien-Cuong, Sibony, Nessim Dynamique des applications d’allure polynomiale J. Math. Pures Appl. (9) 2003 367 423

[12] Dinh, Tien-Cuong, Sibony, Nessim Dynamique des applications polynomiales semi-régulières Ark. Mat. 2004 61 85

[13] Dinh, Tien-Cuong, Sibony, Nessim Groupes commutatifs d’automorphismes d’une variété kählérienne compacte Duke Math. J. 2004 311 328

[14] Favre, Charles, Guedj, Vincent Dynamique des applications rationnelles des espaces multiprojectifs Indiana Univ. Math. J. 2001 881 934

[15] Fornã¦Ss, John Erik, Sibony, Nessim Complex Hénon mappings in 𝐶² and Fatou-Bieberbach domains Duke Math. J. 1992 345 380

[16] Fornã¦Ss, John Erik, Sibony, Nessim Complex dynamics in higher dimensions 1994 131 186

[17] Gillet, Henri, Soulã©, Christophe Arithmetic intersection theory Inst. Hautes Études Sci. Publ. Math. 1990

[18] Griffiths, Phillip, Harris, Joseph Principles of algebraic geometry 1994

[19] Gromov, Mikhaã¯L On the entropy of holomorphic maps Enseign. Math. (2) 2003 217 235

[20] Gromov, M. Convex sets and Kähler manifolds 1990 1 38

[21] Guedj, Vincent Dynamics of polynomial mappings of ℂ² Amer. J. Math. 2002 75 106

[22] Guedj, Vincent, Sibony, Nessim Dynamics of polynomial automorphisms of 𝐂^{𝐤} Ark. Mat. 2002 207 243

[23] Khovanskiä­, A. G. Fewnomials and Pfaff manifolds 1984 549 564

[24] Margulis, G. A. Discrete subgroups of semisimple Lie groups 1991

[25] Mazur, Barry The topology of rational points Experiment. Math. 1992 35 45

[26] Mcmullen, Curtis T. Dynamics on 𝐾3 surfaces: Salem numbers and Siegel disks J. Reine Angew. Math. 2002 201 233

[27] Sibony, Nessim Dynamique des applications rationnelles de 𝐏^{𝐤} 1999

[28] Teissier, B. Bonnesen-type inequalities in algebraic geometry. I. Introduction to the problem 1982 85 105

[29] Yomdin, Y. Volume growth and entropy Israel J. Math. 1987 285 300

Cité par Sources :