Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_04_00473_4,
     author = {Buch, Anders},
     title = {Alternating signs of quiver coefficients},
     journal = {Journal of the American Mathematical Society},
     pages = {217--237},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2005},
     doi = {10.1090/S0894-0347-04-00473-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00473-4/}
}
                      
                      
                    TY - JOUR AU - Buch, Anders TI - Alternating signs of quiver coefficients JO - Journal of the American Mathematical Society PY - 2005 SP - 217 EP - 237 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00473-4/ DO - 10.1090/S0894-0347-04-00473-4 ID - 10_1090_S0894_0347_04_00473_4 ER -
%0 Journal Article %A Buch, Anders %T Alternating signs of quiver coefficients %J Journal of the American Mathematical Society %D 2005 %P 217-237 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00473-4/ %R 10.1090/S0894-0347-04-00473-4 %F 10_1090_S0894_0347_04_00473_4
Buch, Anders. Alternating signs of quiver coefficients. Journal of the American Mathematical Society, Tome 18 (2005) no. 1, pp. 217-237. doi: 10.1090/S0894-0347-04-00473-4
[1] , Degenerations for the representations of an equioriented quiver of type ð´â Boll. Un. Mat. Ital. Suppl. 1980 157 171
[2] , RC-graphs and Schubert polynomials Experiment. Math. 1993 257 269
[3] , Schubert polynomials, the Bruhat order, and the geometry of flag manifolds Duke Math. J. 1998 373 423
[4] On a conjectured formula for quiver varieties J. Algebraic Combin. 2001 151 172
[5] Stanley symmetric functions and quiver varieties J. Algebra 2001 243 260
[6] Grothendieck classes of quiver varieties Duke Math. J. 2002 75 103
[7] A Littlewood-Richardson rule for the ð¾-theory of Grassmannians Acta Math. 2002 37 78
[8] , Chern class formulas for quiver varieties Invent. Math. 1999 665 687
[9] , , , Schubert polynomials and quiver formulas Duke Math. J. 2004 125 143
[10] , Balanced tableaux Adv. in Math. 1987 42 99
[11] , Classes of degeneracy loci for quivers: the Thom polynomial point of view Duke Math. J. 2002 193 213
[12] , Noncommutative Schur functions and their applications Discrete Math. 1998 179 200
[13] , The Yang-Baxter equation, symmetric functions, and Schubert polynomials Discrete Math. 1996 123 143
[14] Flags, Schubert polynomials, degeneracy loci, and determinantal formulas Duke Math. J. 1992 381 420
[15] , A Pieri formula in the Grothendieck ring of a flag bundle Duke Math. J. 1994 711 729
[16] , Subword complexes in Coxeter groups Adv. Math. 2004 161 176
[17] , Degeneracy schemes, quiver schemes, and Schubert varieties Internat. Math. Res. Notices 1998 627 640
[18] Anneau de Grothendieck de la variété de drapeaux 1990 1 34
[19] Transition on Grothendieck polynomials 2001 164 179
[20] , Structure de Hopf de lâanneau de cohomologie et de lâanneau de Grothendieck dâune variété de drapeaux C. R. Acad. Sci. Paris Sér. I Math. 1982 629 633
[21] , Décompositions dans lâalgèbre des différences divisées Discrete Math. 1992 165 179
[22] A characterization of supersymmetric polynomials J. Algebra 1985 439 444
[23] Two remarks on graded nilpotent classes Uspekhi Mat. Nauk 1985 199 200
Cité par Sources :
