Alternating signs of quiver coefficients
Journal of the American Mathematical Society, Tome 18 (2005) no. 1, pp. 217-237

Voir la notice de l'article provenant de la source American Mathematical Society

We prove a formula for the Grothendieck class of a quiver variety, which generalizes the cohomological component formulas of Knutson, Miller, and Shimozono. Our formula implies that the $K$-theoretic quiver coefficients have alternating signs and gives an explicit combinatorial formula for these coefficients. We also prove some new variants of the factor sequences conjecture and a conjecture of Knutson, Miller, and Shimozono, which states that their double ratio formula agrees with the original quiver formulas of the author and Fulton. For completeness we include a short proof of the ratio formula.
DOI : 10.1090/S0894-0347-04-00473-4

Buch, Anders 1

1 Matematisk Institut, Aarhus Universitet, Ny Munkegade, 8000 Århus C, Denmark
@article{10_1090_S0894_0347_04_00473_4,
     author = {Buch, Anders},
     title = {Alternating signs of quiver coefficients},
     journal = {Journal of the American Mathematical Society},
     pages = {217--237},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2005},
     doi = {10.1090/S0894-0347-04-00473-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00473-4/}
}
TY  - JOUR
AU  - Buch, Anders
TI  - Alternating signs of quiver coefficients
JO  - Journal of the American Mathematical Society
PY  - 2005
SP  - 217
EP  - 237
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00473-4/
DO  - 10.1090/S0894-0347-04-00473-4
ID  - 10_1090_S0894_0347_04_00473_4
ER  - 
%0 Journal Article
%A Buch, Anders
%T Alternating signs of quiver coefficients
%J Journal of the American Mathematical Society
%D 2005
%P 217-237
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00473-4/
%R 10.1090/S0894-0347-04-00473-4
%F 10_1090_S0894_0347_04_00473_4
Buch, Anders. Alternating signs of quiver coefficients. Journal of the American Mathematical Society, Tome 18 (2005) no. 1, pp. 217-237. doi: 10.1090/S0894-0347-04-00473-4

[1] Abeasis, S., Del Fra, A. Degenerations for the representations of an equioriented quiver of type 𝐴ₘ Boll. Un. Mat. Ital. Suppl. 1980 157 171

[2] Bergeron, Nantel, Billey, Sara RC-graphs and Schubert polynomials Experiment. Math. 1993 257 269

[3] Bergeron, Nantel, Sottile, Frank Schubert polynomials, the Bruhat order, and the geometry of flag manifolds Duke Math. J. 1998 373 423

[4] Buch, Anders Skovsted On a conjectured formula for quiver varieties J. Algebraic Combin. 2001 151 172

[5] Buch, Anders Skovsted Stanley symmetric functions and quiver varieties J. Algebra 2001 243 260

[6] Buch, Anders Skovsted Grothendieck classes of quiver varieties Duke Math. J. 2002 75 103

[7] Buch, Anders Skovsted A Littlewood-Richardson rule for the 𝐾-theory of Grassmannians Acta Math. 2002 37 78

[8] Buch, Anders Skovsted, Fulton, William Chern class formulas for quiver varieties Invent. Math. 1999 665 687

[9] Buch, Anders S., Kresch, Andrew, Tamvakis, Harry, Yong, Alexander Schubert polynomials and quiver formulas Duke Math. J. 2004 125 143

[10] Edelman, Paul, Greene, Curtis Balanced tableaux Adv. in Math. 1987 42 99

[11] Fehã©R, Lã¡Szlã³, Rimã¡Nyi, Richã¡Rd Classes of degeneracy loci for quivers: the Thom polynomial point of view Duke Math. J. 2002 193 213

[12] Fomin, Sergey, Greene, Curtis Noncommutative Schur functions and their applications Discrete Math. 1998 179 200

[13] Fomin, Sergey, Kirillov, Anatol N. The Yang-Baxter equation, symmetric functions, and Schubert polynomials Discrete Math. 1996 123 143

[14] Fulton, William Flags, Schubert polynomials, degeneracy loci, and determinantal formulas Duke Math. J. 1992 381 420

[15] Fulton, William, Lascoux, Alain A Pieri formula in the Grothendieck ring of a flag bundle Duke Math. J. 1994 711 729

[16] Knutson, Allen, Miller, Ezra Subword complexes in Coxeter groups Adv. Math. 2004 161 176

[17] Lakshmibai, V., Magyar, Peter Degeneracy schemes, quiver schemes, and Schubert varieties Internat. Math. Res. Notices 1998 627 640

[18] Lascoux, Alain Anneau de Grothendieck de la variété de drapeaux 1990 1 34

[19] Lascoux, A. Transition on Grothendieck polynomials 2001 164 179

[20] Lascoux, Alain, Schã¼Tzenberger, Marcel-Paul Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux C. R. Acad. Sci. Paris Sér. I Math. 1982 629 633

[21] Lascoux, Alain, Schã¼Tzenberger, Marcel-Paul Décompositions dans l’algèbre des différences divisées Discrete Math. 1992 165 179

[22] Stembridge, John R. A characterization of supersymmetric polynomials J. Algebra 1985 439 444

[23] Zelevinskiä­, A. V. Two remarks on graded nilpotent classes Uspekhi Mat. Nauk 1985 199 200

Cité par Sources :