Polylogarithms, regulators, and Arakelov motivic complexes
Journal of the American Mathematical Society, Tome 18 (2005) no. 1, pp. 1-60

Voir la notice de l'article provenant de la source American Mathematical Society

We construct an explicit regulator map from the weight $n$ Bloch higher Chow group complex to the weight $n$ Deligne complex of a regular projective complex algebraic variety $X$. We define the weight $n$ Arakelov motivic complex as the cone of this map shifted by one. Its last cohomology group is (a version of) the Arakelov Chow group defined by H. Gillet and C. Soulé. We relate the Grassmannian $n$-logarithms to the geometry of the symmetric space $SL_n(\mathcal {C})/SU(n)$. For $n=2$ we recover Lobachevsky’s formula expressing the volume of an ideal geodesic simplex in the hyperbolic space via the dilogarithm. Using the relationship with symmetric spaces we construct the Borel regulator on $K_{2n-1}(\mathcal {C})$ via the Grassmannian $n$-logarithms. We study the Chow dilogarithm and prove a reciprocity law which strengthens Suslin’s reciprocity law for Milnor’s group $K^M_3$ on curves. Our note,“Chow polylogarithms and regulators”, can serve as an introduction to this paper.
DOI : 10.1090/S0894-0347-04-00472-2

Goncharov, A. 1

1 Department of Mathematics, Brown University, Providence, Rhode Island 02912
@article{10_1090_S0894_0347_04_00472_2,
     author = {Goncharov, A.},
     title = {Polylogarithms, regulators, and {Arakelov} motivic complexes},
     journal = {Journal of the American Mathematical Society},
     pages = {1--60},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2005},
     doi = {10.1090/S0894-0347-04-00472-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00472-2/}
}
TY  - JOUR
AU  - Goncharov, A.
TI  - Polylogarithms, regulators, and Arakelov motivic complexes
JO  - Journal of the American Mathematical Society
PY  - 2005
SP  - 1
EP  - 60
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00472-2/
DO  - 10.1090/S0894-0347-04-00472-2
ID  - 10_1090_S0894_0347_04_00472_2
ER  - 
%0 Journal Article
%A Goncharov, A.
%T Polylogarithms, regulators, and Arakelov motivic complexes
%J Journal of the American Mathematical Society
%D 2005
%P 1-60
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00472-2/
%R 10.1090/S0894-0347-04-00472-2
%F 10_1090_S0894_0347_04_00472_2
Goncharov, A. Polylogarithms, regulators, and Arakelov motivic complexes. Journal of the American Mathematical Society, Tome 18 (2005) no. 1, pp. 1-60. doi: 10.1090/S0894-0347-04-00472-2

[1] Arnol′D, V. I. Matematicheskie metody klassicheskoĭ mekhaniki 1974 431

[2] Beä­Linson, A. A. Higher regulators and values of 𝐿-functions 1984 181 238

[3] Beä­Linson, A. Height pairing between algebraic cycles 1987 1 24

[4] Beä­Linson, A. A. Notes on absolute Hodge cohomology 1986 35 68

[5] Beä­Linson, A., Deligne, P. Interprétation motivique de la conjecture de Zagier reliant polylogarithmes et régulateurs 1994 97 121

[6] Beä­Linson, A., Macpherson, R., Schechtman, V. Notes on motivic cohomology Duke Math. J. 1987 679 710

[7] Bloch, Spencer Algebraic cycles and higher 𝐾-theory Adv. in Math. 1986 267 304

[8] Bloch, S. The moving lemma for higher Chow groups J. Algebraic Geom. 1994 537 568

[9] Bloch, Spencer Algebraic cycles and the BeÄ­linson conjectures 1986 65 79

[10] Bloch, Spencer, Kå™Ã­Å¾, Igor Mixed Tate motives Ann. of Math. (2) 1994 557 605

[11] Borel, Armand Stable real cohomology of arithmetic groups Ann. Sci. École Norm. Sup. (4) 1974

[12] Borel, Armand Cohomologie de 𝑆𝐿_{𝑛} et valeurs de fonctions zeta aux points entiers Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1977 613 636

[13] Bott, Raoul On the characteristic classes of groups of diffeomorphisms Enseign. Math. (2) 1977 209 220

[14] Burgos, Jose Ignacio Arithmetic Chow rings and Deligne-Beilinson cohomology J. Algebraic Geom. 1997 335 377

[15] Consani, Caterina Double complexes and Euler 𝐿-factors Compositio Math. 1998 323 358

[16] Dupont, Johan L. Simplicial de Rham cohomology and characteristic classes of flat bundles Topology 1976 233 245

[17] Deligne, P. Le déterminant de la cohomologie 1987 93 177

[18] Fulton, William Intersection theory 1998

[19] Dynkin, E. B. Topological characteristics of homomorphisms of compact Lie groups Mat. Sb. (N.S.) 1954 129 173

[20] Gabriã¨Lov, A. M., Gel′Fand, I. M., Losik, M. V. Combinatorial computation of characteristic classes. I, II Funkcional. Anal. i Priložen. 1975

[21] Gel′Fand, I. M., Macpherson, R. D. Geometry in Grassmannians and a generalization of the dilogarithm Adv. in Math. 1982 279 312

[22] Gillet, Henri, Soulã©, Christophe Arithmetic intersection theory Inst. Hautes Études Sci. Publ. Math. 1990

[23] Goncharov, A. B. Geometry of configurations, polylogarithms, and motivic cohomology Adv. Math. 1995 197 318

[24] Goncharov, A. B. Polylogarithms and motivic Galois groups 1994 43 96

[25] Goncharov, A. B. Explicit construction of characteristic classes 1993 169 210

[26] Goncharov, A. B. Deninger’s conjecture of 𝐿-functions of elliptic curves at 𝑠 J. Math. Sci. 1996 2631 2656

[27] Goncharov, A. B. Chow polylogarithms and regulators Math. Res. Lett. 1995 95 112

[28] Goncharov, A. B. Geometry of the trilogarithm and the motivic Lie algebra of a field 2000 127 165

[29] Goncharov, A. B. Explicit regulator maps on polylogarithmic motivic complexes 2002 245 276

[30] Goncharov, A. B., Zhao, J. Grassmannian trilogarithms Compositio Math. 2001 83 108

[31] Hain, Richard M., Macpherson, Robert Higher logarithms Illinois J. Math. 1990 392 475

[32] Hain, Richard M. The existence of higher logarithms Compositio Math. 1996 247 276

[33] Hain, Richard M., Yang, Jun Real Grassmann polylogarithms and Chern classes Math. Ann. 1996 157 201

[34] Hanamura, Masaki, Macpherson, Robert Geometric construction of polylogarithms Duke Math. J. 1993 481 516

[35] Hanamura, Masaki, Macpherson, Robert Geometric construction of polylogarithms. II 1996 215 282

[36] Leibniz, G. W. Mathematische Schriften. Bd. I.: Briefwechsel zwischen Leibniz und Oldenburg, Collins, Newton, Galloys, Vitale Giordano. Bd. II: Briefwechsel zwischen Leibniz, Hugens van Zulichem und dem Marquis de l’Hospital 1962

[37] Levine, Marc Bloch’s higher Chow groups revisited Astérisque 1994

[38] Lichtenbaum, Stephen Values of zeta-functions, étale cohomology, and algebraic 𝐾-theory 1973 489 501

[39] Macpherson, Robert The combinatorial formula of Gabrielov, Gel′fand and Losik for the first Pontrjagin class 1978

[40] Nekovã¡Å™, Jan BeÄ­linson’s conjectures 1994 537 570

[41] Nesterenko, Yu. P., Suslin, A. A. Homology of the general linear group over a local ring, and Milnor’s 𝐾-theory Izv. Akad. Nauk SSSR Ser. Mat. 1989 121 146

[42] Beilinson’s conjectures on special values of 𝐿-functions 1988

[43] Scholl, Anthony J. Integral elements in 𝐾-theory and products of modular curves 2000 467 489

[44] Soulã©, C. Lectures on Arakelov geometry 1992

[45] Suslin, A. A. Homology of 𝐺𝐿_{𝑛}, characteristic classes and Milnor 𝐾-theory 1984 357 375

[46] Zagier, Don Polylogarithms, Dedekind zeta functions and the algebraic 𝐾-theory of fields 1991 391 430

Cité par Sources :