The orbifold Chow ring of toric Deligne-Mumford stacks
Journal of the American Mathematical Society, Tome 18 (2005) no. 1, pp. 193-215

Voir la notice de l'article provenant de la source American Mathematical Society

Generalizing toric varieties, we introduce toric Deligne-Mumford stacks. The main result in this paper is an explicit calculation of the orbifold Chow ring of a toric Deligne-Mumford stack. As an application, we prove that the orbifold Chow ring of the toric Deligne-Mumford stack associated to a simplicial toric variety is a flat deformation of (but is not necessarily isomorphic to) the Chow ring of a crepant resolution.
DOI : 10.1090/S0894-0347-04-00471-0

Borisov, Lev 1 ; Chen, Linda 2, 3 ; Smith, Gregory 4, 5

1 Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
2 Department of Mathematics, Columbia University, New York, New York 10027
3 Department of Mathematics, The Ohio State University, 231 W 18th Avenue, Columbus, Ohio 43210
4 Department of Mathematics, Barnard College, Columbia University, New York, New York 10027
5 Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario K7L 3N6 Canada
@article{10_1090_S0894_0347_04_00471_0,
     author = {Borisov, Lev and Chen, Linda and Smith, Gregory},
     title = {The orbifold {Chow} ring of toric {Deligne-Mumford} stacks},
     journal = {Journal of the American Mathematical Society},
     pages = {193--215},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2005},
     doi = {10.1090/S0894-0347-04-00471-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00471-0/}
}
TY  - JOUR
AU  - Borisov, Lev
AU  - Chen, Linda
AU  - Smith, Gregory
TI  - The orbifold Chow ring of toric Deligne-Mumford stacks
JO  - Journal of the American Mathematical Society
PY  - 2005
SP  - 193
EP  - 215
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00471-0/
DO  - 10.1090/S0894-0347-04-00471-0
ID  - 10_1090_S0894_0347_04_00471_0
ER  - 
%0 Journal Article
%A Borisov, Lev
%A Chen, Linda
%A Smith, Gregory
%T The orbifold Chow ring of toric Deligne-Mumford stacks
%J Journal of the American Mathematical Society
%D 2005
%P 193-215
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00471-0/
%R 10.1090/S0894-0347-04-00471-0
%F 10_1090_S0894_0347_04_00471_0
Borisov, Lev; Chen, Linda; Smith, Gregory. The orbifold Chow ring of toric Deligne-Mumford stacks. Journal of the American Mathematical Society, Tome 18 (2005) no. 1, pp. 193-215. doi: 10.1090/S0894-0347-04-00471-0

[1] Abramovich, Dan, Corti, Alessio, Vistoli, Angelo Twisted bundles and admissible covers Comm. Algebra 2003 3547 3618

[2] Abramovich, Dan, Graber, Tom, Vistoli, Angelo Algebraic orbifold quantum products 2002 1 24

[3] Batyrev, Victor V. Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs J. Eur. Math. Soc. (JEMS) 1999 5 33

[4] Borisov, Lev A. String cohomology of a toroidal singularity J. Algebraic Geom. 2000 289 300

[5] Bruns, Winfried, Herzog, Jã¼Rgen Cohen-Macaulay rings 1993

[6] Cox, David A. The homogeneous coordinate ring of a toric variety J. Algebraic Geom. 1995 17 50

[7] Chen, Weimin, Ruan, Yongbin Orbifold Gromov-Witten theory 2002 25 85

[8] Deligne, P., Rapoport, M. Les schémas de modules de courbes elliptiques 1973 143 316

[9] Edidin, Dan Notes on the construction of the moduli space of curves 2000 85 113

[10] Eisenbud, David Commutative algebra 1995

[11] Eisenbud, David, Harris, Joe The geometry of schemes 2000

[12] Eisenbud, David, Sturmfels, Bernd Binomial ideals Duke Math. J. 1996 1 45

[13] Fantechi, Barbara, Gã¶Ttsche, Lothar Orbifold cohomology for global quotients Duke Math. J. 2003 197 227

[14] Fulton, William Introduction to toric varieties 1993

[15] Kollã¡R, Jã¡Nos Rational curves on algebraic varieties 1996

[16] Lafforgue, L. Pavages des simplexes, schémas de graphes recollés et compactification des 𝑃𝐺𝐿ⁿ⁺¹ᵣ/𝑃𝐺𝐿ᵣ Invent. Math. 1999 233 271

[17] Laumon, Gã©Rard, Moret-Bailly, Laurent Champs algébriques 2000

[18] Moerdijk, Ieke Orbifolds as groupoids: an introduction 2002 205 222

[19] Oda, Tadao Convex bodies and algebraic geometry 1988

[20] Poddar, Mainak Orbifold cohomology group of toric varieties 2002 223 231

[21] Stanley, Richard Generalized 𝐻-vectors, intersection cohomology of toric varieties, and related results 1987 187 213

[22] Vistoli, Angelo Intersection theory on algebraic stacks and on their moduli spaces Invent. Math. 1989 613 670

[23] Weibel, Charles A. An introduction to homological algebra 1994

[24] Yasuda, Takehiko Twisted jets, motivic measures and orbifold cohomology Compos. Math. 2004 396 422

[25] Ziegler, Gã¼Nter M. Lectures on polytopes 1995

Cité par Sources :