Voir la notice de l'article provenant de la source American Mathematical Society
Guès, Olivier 1 ; Métivier, Guy 2 ; Williams, Mark 3 ; Zumbrun, Kevin 4
@article{10_1090_S0894_0347_04_00470_9,
     author = {Gu\~A{\textasciidieresis}s, Olivier and M\~A{\textcopyright}tivier, Guy and Williams, Mark and Zumbrun, Kevin},
     title = {Multidimensional viscous shocks {I:} {Degenerate} symmetrizers and long time stability},
     journal = {Journal of the American Mathematical Society},
     pages = {61--120},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2005},
     doi = {10.1090/S0894-0347-04-00470-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00470-9/}
}
                      
                      
                    TY - JOUR AU - Guès, Olivier AU - Métivier, Guy AU - Williams, Mark AU - Zumbrun, Kevin TI - Multidimensional viscous shocks I: Degenerate symmetrizers and long time stability JO - Journal of the American Mathematical Society PY - 2005 SP - 61 EP - 120 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00470-9/ DO - 10.1090/S0894-0347-04-00470-9 ID - 10_1090_S0894_0347_04_00470_9 ER -
%0 Journal Article %A Guès, Olivier %A Métivier, Guy %A Williams, Mark %A Zumbrun, Kevin %T Multidimensional viscous shocks I: Degenerate symmetrizers and long time stability %J Journal of the American Mathematical Society %D 2005 %P 61-120 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00470-9/ %R 10.1090/S0894-0347-04-00470-9 %F 10_1090_S0894_0347_04_00470_9
Guès, Olivier; Métivier, Guy; Williams, Mark; Zumbrun, Kevin. Multidimensional viscous shocks I: Degenerate symmetrizers and long time stability. Journal of the American Mathematical Society, Tome 18 (2005) no. 1, pp. 61-120. doi: 10.1090/S0894-0347-04-00470-9
[1] Stability and asymptotic behavior of differential equations 1965
[2] , Introduction to the theory of linear partial differential equations 1982
[3] , Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels C. R. Acad. Sci. Paris Sér. I Math. 1998 725 728
[4] , Nonlinear stability of overcompressive shock waves in a rotationally invariant system of viscous conservation laws Comm. Math. Phys. 1993 147 158
[5] , Spectral stability of small shock waves Arch. Ration. Mech. Anal. 2002 287 309
[6] , The gap lemma and geometric criteria for instability of viscous shock profiles Comm. Pure Appl. Math. 1998 797 855
[7] Nonlinear asymptotic stability of viscous shock profiles for conservation laws Arch. Rational Mech. Anal. 1986 325 344
[8] Remarks on the stability of viscous shock waves 1991 66 72
[9] Stability of viscous scalar shock fronts in several dimensions Trans. Amer. Math. Soc. 1989 683 695
[10] , Long-time behavior of scalar viscous shock fronts in two dimensions J. Dynam. Differential Equations 1999 255 277
[11] , , , Multidimensional viscous shocks. II. The small viscosity limit Comm. Pure Appl. Math. 2004 141 218
[12] , Curved shocks as viscous limits: a boundary problem approach Indiana Univ. Math. J. 2002 421 450
[13] , Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves Z. Angew. Math. Phys. 1997 597 614
[14] , Pointwise Greenâs function bounds for multidimensional scalar viscous shock fronts J. Differential Equations 2002 368 408
[15] , Asymptotic behavior of multidimensional scalar viscous shock fronts Indiana Univ. Math. J. 2000 427 474
[16] Pointwise estimates on the Greenâs function for a scalar linear convection-diffusion equation J. Differential Equations 1999 327 367
[17] Pointwise Greenâs function approach to stability for scalar conservation laws Comm. Pure Appl. Math. 1999 1295 1313
[18] Stability of weak shocks in ðâð systems Indiana Univ. Math. J. 1991 1193 1219
[19] On the stability of travelling waves in weighted ð¿^{â} spaces J. Differential Equations 1994 179 215
[20] , Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations Phys. D 1998 58 103
[21] , , Asymptotic behavior of solutions for the equations of a viscous heat-conductive gas Proc. Japan Acad. Ser. A Math. Sci. 1986 249 252
[22] Initial boundary value problems for hyperbolic systems Comm. Pure Appl. Math. 1970 277 298
[23] , Stability of systems of viscous conservation laws Comm. Pure Appl. Math. 1998 1397 1424
[24] , , On the convergence to steady state of solutions of nonlinear hyperbolic-parabolic systems SIAM J. Numer. Anal. 1994 1577 1604
[25] Hyperbolic systems of conservation laws and the mathematical theory of shock waves 1973
[26] Nonlinear stability of shock waves for viscous conservation laws Mem. Amer. Math. Soc. 1985
[27] Pointwise convergence to shock waves for viscous conservation laws Comm. Pure Appl. Math. 1997 1113 1182
[28] , Stability of viscous shock waves associated with a system of non-strictly hyperbolic conservation laws Comm. Pure Appl. Math. 1992 361 388
[29] , Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws Mem. Amer. Math. Soc. 1997
[30] , Nonlinear stability of an undercompressive shock for complex Burgers equation Comm. Math. Phys. 1995 163 186
[31] , On nonlinear stability of general undercompressive viscous shock waves Comm. Math. Phys. 1995 319 345
[32] The stability of multidimensional shock fronts Mem. Amer. Math. Soc. 1983
[33] The existence of multidimensional shock fronts Mem. Amer. Math. Soc. 1983
[34] , Pointwise Greenâs function bounds and stability of relaxation shocks Indiana Univ. Math. J. 2002 773 904
[35] , Stability of small-amplitude shock profiles of symmetric hyperbolic-parabolic systems Comm. Pure Appl. Math. 2004 841 876
[36] , Pointwise Green function bounds for shock profiles of systems with real viscosity Arch. Ration. Mech. Anal. 2003 177 263
[37] , Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems Arch. Ration. Mech. Anal. 2004 93 131
[38] , On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas Japan J. Appl. Math. 1985 17 25
[39] Problèmes mixtes non linéaires et stabilité des chocs multidimensionnels Astérisque 1987
[40] Stability of multidimensional shocks 2001 25 103
[41] , An Evans function approach to spectral stability of small-amplitude shock profiles Discrete Contin. Dyn. Syst. 2004 885 924
[42] Viscous approximation of strong shocks of systems of conservation laws SIAM J. Math. Anal. 2003 492 519
[43] , Nonlinear stability of viscous shock waves Arch. Rational Mech. Anal. 1993 53 103
[44] Multidimensional stability of planar viscous shock waves 2001 307 516
[45] , Pointwise semigroup methods and stability of viscous shock waves Indiana Univ. Math. J. 1998 741 871
[46] , Viscous and inviscid stability of multidimensional planar shock fronts Indiana Univ. Math. J. 1999 937 992
Cité par Sources :
