Voir la notice de l'article provenant de la source American Mathematical Society
Caffarelli, Luis 1 ; Petrosyan, Arshak 1, 2 ; Shahgholian, Henrik 3
@article{10_1090_S0894_0347_04_00466_7,
author = {Caffarelli, Luis and Petrosyan, Arshak and Shahgholian, Henrik},
title = {Regularity of a free boundary in parabolic potential theory},
journal = {Journal of the American Mathematical Society},
pages = {827--869},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {2004},
doi = {10.1090/S0894-0347-04-00466-7},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00466-7/}
}
TY - JOUR AU - Caffarelli, Luis AU - Petrosyan, Arshak AU - Shahgholian, Henrik TI - Regularity of a free boundary in parabolic potential theory JO - Journal of the American Mathematical Society PY - 2004 SP - 827 EP - 869 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00466-7/ DO - 10.1090/S0894-0347-04-00466-7 ID - 10_1090_S0894_0347_04_00466_7 ER -
%0 Journal Article %A Caffarelli, Luis %A Petrosyan, Arshak %A Shahgholian, Henrik %T Regularity of a free boundary in parabolic potential theory %J Journal of the American Mathematical Society %D 2004 %P 827-869 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00466-7/ %R 10.1090/S0894-0347-04-00466-7 %F 10_1090_S0894_0347_04_00466_7
Caffarelli, Luis; Petrosyan, Arshak; Shahgholian, Henrik. Regularity of a free boundary in parabolic potential theory. Journal of the American Mathematical Society, Tome 17 (2004) no. 4, pp. 827-869. doi: 10.1090/S0894-0347-04-00466-7
[1] , , Variational problems with two phases and their free boundaries Trans. Amer. Math. Soc. 1984 431 461
[2] , , Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems Ann. of Math. (2) 1996 413 434
[3] A monotonicity formula for heat functions in disjoint domains 1993 53 60
[4] The obstacle problem revisited J. Fourier Anal. Appl. 1998 383 402
[5] , Gradient estimates for variable coefficient parabolic equations and singular perturbation problems Amer. J. Math. 1998 391 439
[6] , , Regularity of a free boundary with application to the Pompeiu problem Ann. of Math. (2) 2000 269 292
[7] Partial differential equations of parabolic type 1964
[8] Variational principles and free-boundary problems 1988
[9] , Regularity in free boundary problems Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1977 373 391
[10] , The smoothness of the free boundary in the one phase Stefan problem Comm. Pure Appl. Math. 1978 257 282
[11] Second order parabolic differential equations 1996
[12] Self-similar blow-up and Hausdorff dimension estimates for a class of parabolic free boundary problems SIAM J. Math. Anal. 1999 623 644
Cité par Sources :