Regularity of a free boundary in parabolic potential theory
Journal of the American Mathematical Society, Tome 17 (2004) no. 4, pp. 827-869

Voir la notice de l'article provenant de la source American Mathematical Society

We study the regularity of the free boundary in a Stefan-type problem \[ \Delta u - \partial _t u = \chi _\Omega \quad \text {in $D\subset \mathbb {R}^n\times \mathbb {R}$}, \qquad u = |\nabla u| = 0 \quad \text {on $D\setminus \Omega $} \] with no sign assumptions on $u$ and the time derivative $\partial _t u$.
DOI : 10.1090/S0894-0347-04-00466-7

Caffarelli, Luis 1 ; Petrosyan, Arshak 1, 2 ; Shahgholian, Henrik 3

1 Department of Mathematics, University of Texas at Austin, Austin, Texas 78712
2 Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
3 Department of Mathematics, Royal Institute of Technology, 100 44, Stockholm, Sweden
@article{10_1090_S0894_0347_04_00466_7,
     author = {Caffarelli, Luis and Petrosyan, Arshak and Shahgholian, Henrik},
     title = {Regularity of a free boundary in parabolic potential theory},
     journal = {Journal of the American Mathematical Society},
     pages = {827--869},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2004},
     doi = {10.1090/S0894-0347-04-00466-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00466-7/}
}
TY  - JOUR
AU  - Caffarelli, Luis
AU  - Petrosyan, Arshak
AU  - Shahgholian, Henrik
TI  - Regularity of a free boundary in parabolic potential theory
JO  - Journal of the American Mathematical Society
PY  - 2004
SP  - 827
EP  - 869
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00466-7/
DO  - 10.1090/S0894-0347-04-00466-7
ID  - 10_1090_S0894_0347_04_00466_7
ER  - 
%0 Journal Article
%A Caffarelli, Luis
%A Petrosyan, Arshak
%A Shahgholian, Henrik
%T Regularity of a free boundary in parabolic potential theory
%J Journal of the American Mathematical Society
%D 2004
%P 827-869
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00466-7/
%R 10.1090/S0894-0347-04-00466-7
%F 10_1090_S0894_0347_04_00466_7
Caffarelli, Luis; Petrosyan, Arshak; Shahgholian, Henrik. Regularity of a free boundary in parabolic potential theory. Journal of the American Mathematical Society, Tome 17 (2004) no. 4, pp. 827-869. doi: 10.1090/S0894-0347-04-00466-7

[1] Alt, Hans Wilhelm, Caffarelli, Luis A., Friedman, Avner Variational problems with two phases and their free boundaries Trans. Amer. Math. Soc. 1984 431 461

[2] Athanasopoulos, I., Caffarelli, L., Salsa, S. Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems Ann. of Math. (2) 1996 413 434

[3] Caffarelli, Luis A. A monotonicity formula for heat functions in disjoint domains 1993 53 60

[4] Caffarelli, L. A. The obstacle problem revisited J. Fourier Anal. Appl. 1998 383 402

[5] Caffarelli, Luis A., Kenig, Carlos E. Gradient estimates for variable coefficient parabolic equations and singular perturbation problems Amer. J. Math. 1998 391 439

[6] Caffarelli, Luis A., Karp, Lavi, Shahgholian, Henrik Regularity of a free boundary with application to the Pompeiu problem Ann. of Math. (2) 2000 269 292

[7] Friedman, Avner Partial differential equations of parabolic type 1964

[8] Friedman, Avner Variational principles and free-boundary problems 1988

[9] Kinderlehrer, D., Nirenberg, L. Regularity in free boundary problems Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1977 373 391

[10] Kinderlehrer, David, Nirenberg, Louis The smoothness of the free boundary in the one phase Stefan problem Comm. Pure Appl. Math. 1978 257 282

[11] Lieberman, Gary M. Second order parabolic differential equations 1996

[12] Weiss, G. S. Self-similar blow-up and Hausdorff dimension estimates for a class of parabolic free boundary problems SIAM J. Math. Anal. 1999 623 644

Cité par Sources :