A monotonicity formula on complete Kähler manifolds with nonnegative bisectional curvature
Journal of the American Mathematical Society, Tome 17 (2004) no. 4, pp. 909-946

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper, we derive a new monotonicity formula for the plurisubharmonic functions/positive (1,1) currents on complete Kähler manifolds with nonnegative bisectional curvature. As applications we derive the sharp estimates for the dimension of the spaces of holomorphic functions (sections) with polynomial growth, which, in particular, partially solve a conjecture of Yau. The methods used in this paper, without the assumption of maximum volume of growth, as observed recently by Chen, Fu, Yin, and Zhu, provide a complete solution to Yau’s conjecture.
DOI : 10.1090/S0894-0347-04-00465-5

Ni, Lei 1

1 Department of Mathematics, University of California, San Diego, La Jolla, Californiz 92093
@article{10_1090_S0894_0347_04_00465_5,
     author = {Ni, Lei},
     title = {A monotonicity formula on complete {K\~A{\textcurrency}hler} manifolds with nonnegative bisectional curvature},
     journal = {Journal of the American Mathematical Society},
     pages = {909--946},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2004},
     doi = {10.1090/S0894-0347-04-00465-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00465-5/}
}
TY  - JOUR
AU  - Ni, Lei
TI  - A monotonicity formula on complete Kähler manifolds with nonnegative bisectional curvature
JO  - Journal of the American Mathematical Society
PY  - 2004
SP  - 909
EP  - 946
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00465-5/
DO  - 10.1090/S0894-0347-04-00465-5
ID  - 10_1090_S0894_0347_04_00465_5
ER  - 
%0 Journal Article
%A Ni, Lei
%T A monotonicity formula on complete Kähler manifolds with nonnegative bisectional curvature
%J Journal of the American Mathematical Society
%D 2004
%P 909-946
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00465-5/
%R 10.1090/S0894-0347-04-00465-5
%F 10_1090_S0894_0347_04_00465_5
Ni, Lei. A monotonicity formula on complete Kähler manifolds with nonnegative bisectional curvature. Journal of the American Mathematical Society, Tome 17 (2004) no. 4, pp. 909-946. doi: 10.1090/S0894-0347-04-00465-5

[1] Andreotti, Aldo, Tomassini, Giuseppe Some remarks on pseudoconcave manifolds 1970 85 104

[2] Andreotti, Aldo, Vesentini, Edoardo Carleman estimates for the Laplace-Beltrami equation on complex manifolds Inst. Hautes Études Sci. Publ. Math. 1965 81 130

[3] Bombieri, Enrico Algebraic values of meromorphic maps Invent. Math. 1970 267 287

[4] Bishop, R. L., Goldberg, S. I. On the second cohomology group of a Kaehler manifold of positive curvature Proc. Amer. Math. Soc. 1965 119 122

[5] Cao, Huai Dong On Harnack’s inequalities for the Kähler-Ricci flow Invent. Math. 1992 247 263

[6] Cheng, S. Y., Yau, S. T. Differential equations on Riemannian manifolds and their geometric applications Comm. Pure Appl. Math. 1975 333 354

[7] Chow, Bennett Interpolating between Li-Yau’s and Hamilton’s Harnack inequalities on a surface J. Partial Differential Equations 1998 137 140

[8] Chow, Bennett, Hamilton, Richard S. Constrained and linear Harnack inequalities for parabolic equations Invent. Math. 1997 213 238

[9] Colding, Tobias H., Minicozzi, William P., Ii Weyl type bounds for harmonic functions Invent. Math. 1998 257 298

[10] Demailly, Jean-Pierre 𝐿² vanishing theorems for positive line bundles and adjunction theory 1996 1 97

[11] Donaldson, S. K. Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles Proc. London Math. Soc. (3) 1985 1 26

[12] Donnelly, Harold Harmonic functions on manifolds of nonnegative Ricci curvature Internat. Math. Res. Notices 2001 429 434

[13] Griffiths, Phillip, Harris, Joseph Principles of algebraic geometry 1978

[14] Greene, R. E., Wu, H. Analysis on noncompact Kähler manifolds 1977 69 100

[15] Hamilton, Richard S. The Harnack estimate for the Ricci flow J. Differential Geom. 1993 225 243

[16] Hã¶Rmander, Lars An introduction to complex analysis in several variables 1990

[17] Morrow, James, Kodaira, Kunihiko Complex manifolds 1971

[18] Li, Peter Harmonic functions of linear growth on Kähler manifolds with nonnegative Ricci curvature Math. Res. Lett. 1995 79 94

[19] Li, Peter Curvature and function theory on Riemannian manifolds 2000 375 432

[20] Li, Peter, Schoen, Richard 𝐿^{𝑝} and mean value properties of subharmonic functions on Riemannian manifolds Acta Math. 1984 279 301

[21] Li, Peter, Tam, Luen-Fai Linear growth harmonic functions on a complete manifold J. Differential Geom. 1989 421 425

[22] Li, Peter, Tam, Luen-Fai Complete surfaces with finite total curvature J. Differential Geom. 1991 139 168

[23] Li, Peter, Tam, Luen-Fai, Wang, Jiaping Sharp bounds for the Green’s function and the heat kernel Math. Res. Lett. 1997 589 602

[24] Li, Peter, Wang, Jiaping Counting massive sets and dimensions of harmonic functions J. Differential Geom. 1999 237 278

[25] Li, Peter, Yau, Shing-Tung On the parabolic kernel of the Schrödinger operator Acta Math. 1986 153 201

[26] Mok, Ngaiming An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties Bull. Soc. Math. France 1984 197 250

[27] Mok, Ngaiming, Siu, Yum Tong, Yau, Shing Tung The Poincaré-Lelong equation on complete Kähler manifolds Compositio Math. 1981 183 218

[28] Ni, Lei The Poisson equation and Hermitian-Einstein metrics on holomorphic vector bundles over complete noncompact Kähler manifolds Indiana Univ. Math. J. 2002 679 704

[29] Ni, Lei The entropy formula for linear heat equation J. Geom. Anal. 2004 87 100

[30] Ni, Lei Hermitian harmonic maps from complete Hermitian manifolds to complete Riemannian manifolds Math. Z. 1999 331 355

[31] Napier, Terrence, Ramachandran, Mohan The 𝐿²\overline∂-method, weak Lefschetz theorems, and the topology of Kähler manifolds J. Amer. Math. Soc. 1998 375 396

[32] Ni, Lei, Shi, Yuguang, Tam, Luen-Fai Poisson equation, Poincaré-Lelong equation and curvature decay on complete Kähler manifolds J. Differential Geom. 2001 339 388

[33] Ni, Lei, Tam, Luen-Fai Plurisubharmonic functions and the Kähler-Ricci flow Amer. J. Math. 2003 623 654

[34] Ni, Lei, Tam, Luen-Fai Plurisubharmonic functions and the structure of complete Kähler manifolds with nonnegative curvature J. Differential Geom. 2003 457 524

[35] Shafarevich, Igor R. Basic algebraic geometry. 2 1994

[36] Siu, Yum Tong Pseudoconvexity and the problem of Levi Bull. Amer. Math. Soc. 1978 481 512

[37] Wu, H. Polynomial functions on complete Kähler manifolds 1991 601 610

[38] Zariski, Oscar, Samuel, Pierre Commutative algebra. Vol. 1 1975

Cité par Sources :