Voir la notice de l'article provenant de la source American Mathematical Society
van Strien, Sebastian 1 ; Vargas, Edson 2
@article{10_1090_S0894_0347_04_00463_1,
     author = {van Strien, Sebastian and Vargas, Edson},
     title = {Real bounds, ergodicity and negative {Schwarzian} for multimodal maps},
     journal = {Journal of the American Mathematical Society},
     pages = {749--782},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2004},
     doi = {10.1090/S0894-0347-04-00463-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00463-1/}
}
                      
                      
                    TY - JOUR AU - van Strien, Sebastian AU - Vargas, Edson TI - Real bounds, ergodicity and negative Schwarzian for multimodal maps JO - Journal of the American Mathematical Society PY - 2004 SP - 749 EP - 782 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00463-1/ DO - 10.1090/S0894-0347-04-00463-1 ID - 10_1090_S0894_0347_04_00463_1 ER -
%0 Journal Article %A van Strien, Sebastian %A Vargas, Edson %T Real bounds, ergodicity and negative Schwarzian for multimodal maps %J Journal of the American Mathematical Society %D 2004 %P 749-782 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00463-1/ %R 10.1090/S0894-0347-04-00463-1 %F 10_1090_S0894_0347_04_00463_1
van Strien, Sebastian; Vargas, Edson. Real bounds, ergodicity and negative Schwarzian for multimodal maps. Journal of the American Mathematical Society, Tome 17 (2004) no. 4, pp. 749-782. doi: 10.1090/S0894-0347-04-00463-1
[1] , Measure and dimension of solenoidal attractors of one-dimensional dynamical systems Comm. Math. Phys. 1990 573 583
[2] , Measurable dynamics of ð-unimodal maps of the interval Ann. Sci. Ãcole Norm. Sup. (4) 1991 545 573
[3] , Nonexistence of wandering intervals and structure of topological attractors of one-dimensional dynamical systems. II. The smooth case Ergodic Theory Dynam. Systems 1989 751 758
[4] , , , Wild Cantor attractors exist Ann. of Math. (2) 1996 97 130
[5] Axiom A maps are dense in the space of unimodal maps in the ð¶^{ð} topology Ann. of Math. (2) 2003 1 43
[6] Getting rid of the negative Schwarzian derivative condition Ann. of Math. (2) 2000 743 762
[7] Bounds for maps of an interval with one reflecting critical point. I Fund. Math. 1998 287 298
[8] , Local connectivity of the Julia set of real polynomials Ann. of Math. (2) 1998 471 541
[9] , Bounds for maps of an interval with one critical point of inflection type. II Invent. Math. 2000 399 465
[10] Nonexistence of wandering intervals and structure of topological attractors of one-dimensional dynamical systems. I. The case of negative Schwarzian derivative Ergodic Theory Dynam. Systems 1989 737 749
[11] Hyperbolicity, sinks and measure in one-dimensional dynamics Comm. Math. Phys. 1985 495 524
[12] Distortion results and invariant Cantor sets of unimodal maps Ergodic Theory Dynam. Systems 1994 331 349
[13] , , Julia-Fatou-Sullivan theory for real one-dimensional dynamics Acta Math. 1992 273 318
[14] , A structure theorem in one-dimensional dynamics Ann. of Math. (2) 1989 519 546
[15] , One-dimensional dynamics 1993
[16] Bounds for one-dimensional maps without inflection critical points J. Math. Sci. Univ. Tokyo 2003 41 88
[17] On the measurable dynamics of real rational functions Ergodic Theory Dynam. Systems 2003 957 983
[18] On the metric properties of multimodal interval maps and ð¶Â² density of Axiom A Invent. Math. 2004 301 403
[19] , Decay of geometry in the cubic family Ergodic Theory Dynam. Systems 1998 1311 1329
[20] Hyperbolicity and invariant measures for general ð¶Â² interval maps satisfying the Misiurewicz condition Comm. Math. Phys. 1990 437 495
[21] Measure of minimal sets of polymodal maps Ergodic Theory Dynam. Systems 1996 159 178
Cité par Sources :
