Real bounds, ergodicity and negative Schwarzian for multimodal maps
Journal of the American Mathematical Society, Tome 17 (2004) no. 4, pp. 749-782

Voir la notice de l'article provenant de la source American Mathematical Society

We consider smooth multimodal maps which have finitely many non-flat critical points. We prove the existence of real bounds. From this we obtain a new proof for the non-existence of wandering intervals, derive extremely useful improved Koebe principles, show that high iterates have ‘negative Schwarzian derivative’ and give results on ergodic properties of the map. One of the main complications in the proofs is that we allow $f$ to have inflection points.
DOI : 10.1090/S0894-0347-04-00463-1

van Strien, Sebastian 1 ; Vargas, Edson 2

1 Department of Mathematics, Warwick University, Coventry CV4 7AL, England
2 Department of Mathematics, University of São Paulo, São Paulo, Brazil
@article{10_1090_S0894_0347_04_00463_1,
     author = {van Strien, Sebastian and Vargas, Edson},
     title = {Real bounds, ergodicity and negative {Schwarzian} for multimodal maps},
     journal = {Journal of the American Mathematical Society},
     pages = {749--782},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2004},
     doi = {10.1090/S0894-0347-04-00463-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00463-1/}
}
TY  - JOUR
AU  - van Strien, Sebastian
AU  - Vargas, Edson
TI  - Real bounds, ergodicity and negative Schwarzian for multimodal maps
JO  - Journal of the American Mathematical Society
PY  - 2004
SP  - 749
EP  - 782
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00463-1/
DO  - 10.1090/S0894-0347-04-00463-1
ID  - 10_1090_S0894_0347_04_00463_1
ER  - 
%0 Journal Article
%A van Strien, Sebastian
%A Vargas, Edson
%T Real bounds, ergodicity and negative Schwarzian for multimodal maps
%J Journal of the American Mathematical Society
%D 2004
%P 749-782
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00463-1/
%R 10.1090/S0894-0347-04-00463-1
%F 10_1090_S0894_0347_04_00463_1
van Strien, Sebastian; Vargas, Edson. Real bounds, ergodicity and negative Schwarzian for multimodal maps. Journal of the American Mathematical Society, Tome 17 (2004) no. 4, pp. 749-782. doi: 10.1090/S0894-0347-04-00463-1

[1] Blokh, A. M., Lyubich, M. Yu. Measure and dimension of solenoidal attractors of one-dimensional dynamical systems Comm. Math. Phys. 1990 573 583

[2] Blokh, A. M., Lyubich, M. Yu. Measurable dynamics of 𝑆-unimodal maps of the interval Ann. Sci. École Norm. Sup. (4) 1991 545 573

[3] Blokh, A. M., Lyubich, M. Yu. Nonexistence of wandering intervals and structure of topological attractors of one-dimensional dynamical systems. II. The smooth case Ergodic Theory Dynam. Systems 1989 751 758

[4] Bruin, H., Keller, G., Nowicki, T., Van Strien, S. Wild Cantor attractors exist Ann. of Math. (2) 1996 97 130

[5] Kozlovski, O. S. Axiom A maps are dense in the space of unimodal maps in the 𝐶^{𝑘} topology Ann. of Math. (2) 2003 1 43

[6] Kozlovski, O. S. Getting rid of the negative Schwarzian derivative condition Ann. of Math. (2) 2000 743 762

[7] Levin, Genadi Bounds for maps of an interval with one reflecting critical point. I Fund. Math. 1998 287 298

[8] Levin, Genadi, Van Strien, Sebastian Local connectivity of the Julia set of real polynomials Ann. of Math. (2) 1998 471 541

[9] Levin, Genadi, Van Strien, Sebastian Bounds for maps of an interval with one critical point of inflection type. II Invent. Math. 2000 399 465

[10] Lyubich, M. Yu. Nonexistence of wandering intervals and structure of topological attractors of one-dimensional dynamical systems. I. The case of negative Schwarzian derivative Ergodic Theory Dynam. Systems 1989 737 749

[11] Maã±Ã©, Ricardo Hyperbolicity, sinks and measure in one-dimensional dynamics Comm. Math. Phys. 1985 495 524

[12] Martens, Marco Distortion results and invariant Cantor sets of unimodal maps Ergodic Theory Dynam. Systems 1994 331 349

[13] Martens, M., De Melo, W., Van Strien, S. Julia-Fatou-Sullivan theory for real one-dimensional dynamics Acta Math. 1992 273 318

[14] De Melo, W., Van Strien, S. A structure theorem in one-dimensional dynamics Ann. of Math. (2) 1989 519 546

[15] De Melo, Welington, Van Strien, Sebastian One-dimensional dynamics 1993

[16] Shen, Weixiao Bounds for one-dimensional maps without inflection critical points J. Math. Sci. Univ. Tokyo 2003 41 88

[17] Shen, Weixiao On the measurable dynamics of real rational functions Ergodic Theory Dynam. Systems 2003 957 983

[18] Shen, Weixiao On the metric properties of multimodal interval maps and 𝐶² density of Axiom A Invent. Math. 2004 301 403

[19] ŚWiaì§Tek, Grzegorz, Vargas, Edson Decay of geometry in the cubic family Ergodic Theory Dynam. Systems 1998 1311 1329

[20] Van Strien, Sebastian Hyperbolicity and invariant measures for general 𝐶² interval maps satisfying the Misiurewicz condition Comm. Math. Phys. 1990 437 495

[21] Vargas, E. Measure of minimal sets of polymodal maps Ergodic Theory Dynam. Systems 1996 159 178

Cité par Sources :