Solution of Shannon’s problem on the monotonicity of entropy
Journal of the American Mathematical Society, Tome 17 (2004) no. 4, pp. 975-982

Voir la notice de l'article provenant de la source American Mathematical Society

It is shown that if $X_1,X_2,\ldots$ are independent and identically distributed square-integrable random variables, then the entropy of the normalized sum \[ \operatorname {Ent} \left (\frac {X_{1}+\cdots + X_{n}}{\sqrt {n}} \right ) \] is an increasing function of $n$. The result also has a version for non-identically distributed random variables or random vectors.
DOI : 10.1090/S0894-0347-04-00459-X

Artstein, Shiri 1 ; Ball, Keith 2 ; Barthe, Franck 3 ; Naor, Assaf 4

1 School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
2 Department of Mathematics, University College London, Gower Street, London WC1 6BT, United Kingdom
3 Institut de Mathématiques, Laboratoire de Statistique et Probabilités, CNRS UMR C5583, Université Paul Sabatier, 31062 Toulouse Cedex 4, France
4 Theory Group, Microsoft Research, One Microsoft Way, Redmond, Washington 98052-6399
@article{10_1090_S0894_0347_04_00459_X,
     author = {Artstein, Shiri and Ball, Keith and Barthe, Franck and Naor, Assaf},
     title = {Solution of {Shannon\^a€™s} problem on the monotonicity of entropy},
     journal = {Journal of the American Mathematical Society},
     pages = {975--982},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2004},
     doi = {10.1090/S0894-0347-04-00459-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00459-X/}
}
TY  - JOUR
AU  - Artstein, Shiri
AU  - Ball, Keith
AU  - Barthe, Franck
AU  - Naor, Assaf
TI  - Solution of Shannon’s problem on the monotonicity of entropy
JO  - Journal of the American Mathematical Society
PY  - 2004
SP  - 975
EP  - 982
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00459-X/
DO  - 10.1090/S0894-0347-04-00459-X
ID  - 10_1090_S0894_0347_04_00459_X
ER  - 
%0 Journal Article
%A Artstein, Shiri
%A Ball, Keith
%A Barthe, Franck
%A Naor, Assaf
%T Solution of Shannon’s problem on the monotonicity of entropy
%J Journal of the American Mathematical Society
%D 2004
%P 975-982
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00459-X/
%R 10.1090/S0894-0347-04-00459-X
%F 10_1090_S0894_0347_04_00459_X
Artstein, Shiri; Ball, Keith; Barthe, Franck; Naor, Assaf. Solution of Shannon’s problem on the monotonicity of entropy. Journal of the American Mathematical Society, Tome 17 (2004) no. 4, pp. 975-982. doi: 10.1090/S0894-0347-04-00459-X

[1] Bakry, D., ÉMery, Michel Diffusions hypercontractives 1985 177 206

[2] Barron, Andrew R. Entropy and the central limit theorem Ann. Probab. 1986 336 342

[3] Carlen, E. A., Soffer, A. Entropy production by block variable summation and central limit theorems Comm. Math. Phys. 1991 339 371

[4] Lieb, Elliott H. Proof of an entropy conjecture of Wehrl Comm. Math. Phys. 1978 35 41

[5] Ward, Morgan, Dilworth, R. P. The lattice theory of ova Ann. of Math. (2) 1939 600 608

[6] Stam, A. J. Some inequalities satisfied by the quantities of information of Fisher and Shannon Information and Control 1959 101 112

Cité par Sources :